
CONCURRENCY AND COMPUTATION: PRACTICE AND EXPERIENCE
Concurrency Computat.: Pract. Exper. (2009)
Published online in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/cpe.1400

A biologically inspired
framework for multimedia
service management in a
ubiquitous environment

M. Shamim Hossain∗,†, A. Alamri andAbdulmotaleb El Saddik

Multimedia Communications Research Laboratory (MCRLab), School of
Information Technology and Engineering (SITE), University of Ottawa,
Ottawa, Ont., Canada K1N 6N5

SUMMARY

This paper addresses several key issues in distributed multimedia services management and composition
such as scalability, heterogeneity, and quality of service (QoS). The proposed framework introduces
biologically inspired multimedia service management through the composition of basic multimedia services
such as streaming services and different transcoding services. The biologically inspired approach is used
for collecting the QoS requirements from individual transcoding services in order to select the most
suitable services for the desired composition process. A prototype of the proposed framework is designed,
implemented, and evaluated in terms of scalability and load balancing. Copyright © 2009 John Wiley &
Sons, Ltd.

Received 18 May 2008; Revised 21 August 2008; Accepted 17 September 2008

KEY WORDS: multimedia service management; transcoding service; service-oriented architecture (SOA);
biologically inspired approach

1. INTRODUCTION

The emergence of the Service-Oriented Architecture (SOA) paradigm, where numerous services
dynamically join and leave the pervasive network environment has resulted in the proliferation of
distributed multimedia services (e.g. multimedia transcoding services and streaming services) at any
time from any pervasive device through any network. However, the heterogeneity of resources, the
quality of service (QoS) demand of distributed rich multimedia services and the changing network
characteristics pose a challenge for the management of those services in a ubiquitous environment.

∗Correspondence to: M. Shamim Hossain, Multimedia Communications Research Laboratory (MCRLab), School of Infor-
mation Technology and Engineering (SITE), University of Ottawa, Ottawa, Ont., Canada K1N 6N5.

†E-mail: shamim@mcrlab.uottawa.ca

Copyright q 2009 John Wiley & Sons, Ltd.



M. S. HOSSAIN, A. ALAMRI AND A. EL SADDIK

One of the issues in multimedia service management is to get complex multimedia composite
services dynamically from a number of available services and to maintain this composite service
in a highly distributed and ever-changing network environment.
It is desired to access multimedia services ubiquitously through heterogeneous devices such as

PCs, laptops, cell phones, and PDAs. Each of these devices has different capabilities and resources
in terms of processing power, display (e.g. resolution and colors) and storage. Multimedia services
are diverse in terms of the different operating systems that they are running on, the limited set of
formats they support (M-JPEG, MPEG-4, H.263, H.264, etc.), and finally the incompatibility of
supported codecs. QoS is also an important issue in dynamic service composition as well as service
management. As each service has a common functionality, albeit with different QoS characteristics,
a mechanism to select suitable services is required for a composite multimedia service. Flexibility
is the ability to adapt an on demand service composition process that is customized for the users in
a dynamically changing ubiquitous environment, where everyday new multimedia services appear
and existing services disappear frequently and at any time.
To meet the above challenges, a framework for multimedia service management, which combines

SOA [1] with a biologically inspired mechanism for seamless multimedia service composition in a
ubiquitous environment, is expected to be a viable solution. In the proposed framework, a collection
of services can be assembled to deliver composite multimedia services that are customized for the
user’s demand. This may include, but is not limited to, a streaming service, transcoding service,
conferencing service, and registry service. Each type of multimedia service with similar functionality
may have different QoS demands.
Currently, there are numerous existing researches related to web service management [2–4] and

web service composition [5–9]; however, only a few have addressed multimedia service manage-
ment [10,11]. Multimedia service management deals with multimedia service composition [12]
and service maintenance (e.g. load balancing). Owing to (a) the rich semantics of multimedia con-
tent, (b) the complexity and dynamic characteristics (e.g. synchronization and continuous flow of
stream) of multimedia applications and their metadata, and (c) the QoS demand of the user as well
as multimedia itself, it is not easy to directly apply some of the existing solutions in web services
composition into the multimedia domain [13,14].
The described framework is one of the few attempts toward bringing the combined potential of

service-oriented architecture and the foraging behavior of ant colony concepts [15] into multimedia
service management research. The proposed framework is evaluated through implementation as well
as simulation in terms of scalability, load distribution, and some QoS parameters. The scalability
was evaluated in terms of concurrent service requests.
The remainder of this paper is organized as follows. Section 2 describes some related studies

and research challenges. Section 3 gives an overview of the system based on the SOA paradigm.
It also describes the detailed system architecture. Section 4 presents brief implementation details,
the experimental results, and the analysis. Finally, concluding remarks are made in Section 5.

2. RELATED STUDIES

Recently, interdisciplinary research specifically bringing inspiration from the metaphor of a bio-
inspired process toward a multimedia system [16,17], distributed system [18], service composition

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



A BIOLOGICALLY-INSPIRED FRAMEWORK

[19,20], service management [21], different communication network services and system [22,23]
have been gaining attention in the research community. The reason behind such choice is twofold:
(a) bio-inspired system has the natural capability of self-healing and robustness in dynamic and
uncertain environments and (b) it is able to scale and adapt to the highly distributed, large scale,
and dynamically ever-changing ubiquitous network environment.
SOA based on the realization of service-oriented computing is gaining significant attention in

industry, science, and the academic world due to its advantages, which include scalability and
the flexible composition of services that ranges from telecommunication to multimedia. SOA has
been applied in different application domains such as mobile service [24,25] , Grid services for
multimedia streaming in e-learning environment [26], optical network service [27], pervasive and
ubiquitous environment[13], web application [28], collaborative service [29], Service management
[2,11]; however, little is known about the use of SOA in the multimedia application domain other
than the work mentioned in [26,30]. The challenge of SOA for multimedia service composition has
been addressed in [12].
In [30], Wu et al. proposed a Global Multimedia Collaboration System (Global-MMCS) based

on grid computing. This grid computing is parallelization of applications and systematic use of
idle resources in the overall network environment. The authors attempted to integrate the SOA
paradigm with grid computing, where XML-based General Session Protocol (XGSP) and simple
object access protocol (SOAP) are used for creating and controlling VoIP conferencing services.
Using XGSP schema, a Global-MMCS is developed, which can support and integrate services such
as videoconferencing, instant messaging, and streaming. Mainly audio streaming was extensively
used, video transcoding used to a limited extent; scalability was tested using a text chat session.
In [11], Jin and Nahrsted proposed a QoS-aware service management framework where scalability
was evaluated in terms of network size and client application’s population size. This approach
used a dijkstra-based algorithm for service path computation and service composition The service
management includes the collection of QoS (e.g. bit rate, frame rate, resolution, delay) as well as
functional information, composition (path finding), and service maintenance (tree rearrangement
or resource adaptation and failure recovery.
Ding et al. [19] use bio-entity inspired by the immune behavior of a neuro-endocrine-immune

system for web service composition and management. The system is regarded as a web service
emergent system (WSES), where service composition is developed through web service emergence.
InWSES, in response to a web request, the bio-entities set up the new composite web service through
negotiation of the bio-entities. The system was evaluated in terms of energy consumption, response
time, and adaptability.
In [21], Chiang et al. propose a bio-inspired framework for service management in a ubiquitous

computing environment. An Ant Colony Optimization (ACO) meta-heuristics is adopted for the
configuration of this network service component. As a proof of concept, they simulate the service
configuration process (composition plan) for an e-mail application.
To the best of our knowledge, only a few researchers use biologically inspired concepts in the

multimedia domain other than the previous work [16]. In this work, authors focus on a biologically
inspired ant colony’s foraging behavior in multimedia content repurposing, where authors make use
of a biologically inspired service selection algorithm for selecting suitable repurposing services for
heterogeneous network environments based on QoS. Our framework is somewhat consistent with
[21] in using the ACO-based approach; however, we distinguish our work in many aspects. First, we

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



M. S. HOSSAIN, A. ALAMRI AND A. EL SADDIK

adopted an AntNet service selection strategy in the context of real time multimedia streaming for
ubiquitous users. Second, in order to validate the above we implemented the proposed management
framework for live multimedia streaming. Third, through simulation we also present some service
management issues such as load management. We also distinguish our proposed framework from
the previous work [16] in using the potential and promises of the SOA paradigm in order to fulfill
the distributed ubiquitous access of multimedia service by composing a simple multimedia service
component.

3. THE SOA-BASED FRAMEWORK FOR MULTIMEDIA SERVICE MANAGEMENT

The proposed multimedia service management system consists of three main components in addition
to the client. The three components represent a variety of services that are depicted in Figure 1. These
services are the registry service, the streaming service, and the transcoding service. Each service

Figure 1. The SOA-based multimedia management system scenario.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



A BIOLOGICALLY-INSPIRED FRAMEWORK

has a different job or functionality to provide to its requestor. This can guarantee the flexibility,
scalability, and extendibility of the architecture to include more services if needed.
The client first queries the registry to find out a streaming service. Then, it sends a request to the

streaming service with specific QOS parameters. The streaming service is the service that originates
or creates the multimedia stream. The originated stream can either be captured in real time by using
a web cam, for example, or it can be an already stored content that the streaming server retrieves.
The transcoding service transforms the media stream from one media format to another according
to the request. In addition to the incoming stream, the transcoding service should accept a file
from the requester. This file corresponds to a composite transcoding service that is constituted by
multiple calls to primitive transcoding services in order to produce the final content as a reply to
the client request.
Each transcoding service forwards its output stream to the next subsequent service based on

the composite service plan until the last service, which forwards its output directly to the client.
The framework relies on a registry, which is used for service query purposes. The registry is like
a database that contains identification information about the different services in the architecture.
After the creation of each service, the first step is to register the service in the registry using the
correct keywords and under the proper classification that truthfully describes the service. Multiple
transcoding services can reside in the host and usually this network host node is called a proxy
server.
When the client requires a media stream, it first searches a streaming service from the registry.

The fetch request returns the Web Service Description Language (WSDL) file [31]. The streaming
service that geographically resides in the nearest point to the client is returned as a reply to the
client fetch request. This is highly required to minimize network resource consumption. Using the
WSDL file, the client generates a request to the streaming service using SOAP [32] and sends it
to the service. The request consists of a call to the streaming service with parameters such as the
format of the stream and the client location.
Upon receiving a request, the streaming service uses already gathered information by the bio-

inspired component to create a composite transcoding service to satisfy the client request. The bio-
inspired component works independently within each streaming service to dispatch ants periodically
based on the information available at the registry to collect information about transcoding services.
Then, the streaming service utilizes this information by a service composition system to compose
a composite service as previously described.
When the composite transcoding service is created, the streaming service sends a transcoding

request to the first transcoding service in the composite file followed by the media stream itself.
The transcoding service transforms the stream into another form of media stream and forwards it to
the next transcoding service preceded by the composite service file. Before sending the composite
service file, each transcoding file eliminates itself from the file to ensure the sequence of execution.
When the last transcoding service in the XML file list is reached, it sends its output directly to the
client as a result of its request.In the following, we will discuss each of the services in more detail.

3.1. The streaming service

As depicted in Figure 2, the streaming service consists of three components: the bio-inspired service
selection component, the composition component, and the execution component.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



M. S. HOSSAIN, A. ALAMRI AND A. EL SADDIK

Figure 2. A decomposed view of the streaming service.

3.1.1. The Bio-inspired service selection component

The biologically inspired selection component is an independent system that resides at each stream-
ing service in this SOA-based architecture. It is motivated from the foraging behavior of an ant
colony metaphor [33] of AntNet. Using the main registry of the architecture, this system discovers
other transcoding services and periodically dispatches ants to these services. Through this compo-
nent, the streaming service is able to discover and collect QoS information about other transcoding
services by dispatching ants, called forward ants, toward a targeted transcoding service. The col-
lected QoS data are used to facilitate service discovery and selection, and eventually to optimize
the composed process. To do so, the ant should know other neighbor transcoding services, and this
can be achieved by inquiring the registry. When a targeted transcoding service fails to find other
neighbor transcoding services, the forward ant dies and a backward ant is created and sent back
toward the original streaming service. Upon receiving the backward ant at the original streaming
service, the system strips the ant object and stores its collected data in a separate QoS Data Model
to be used by the composition component.

3.1.2. The composition component

The composition component builds up a composition plan of multiple transcoding services to satisfy
a client query. This component accepts a client request of a media stream with a specific format and
size. Then, it un-marshals the request and identifies the criteria of the request that will be used to
create the composition plan. The plan contains all the information needed to identify the transcoding
services to be used and the client. After that the system utilizes the information available in the QoS

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



A BIOLOGICALLY-INSPIRED FRAMEWORK

Data Model to find out possible composition plans that satisfy the client request. In case more than
one plan is found, the component shall select the one with the highest QoS score. The composition
plan is a file that plans the sequence of execution for the media transcoding services until the final
transcoded media streams reach the client. It is comparable to the service configuration stated in
[34]. Some of the examples of this composition plans are as follows:
SCn : MS → TS1 → TS2 → TS3 · · ·TSn → Clients(PDA,Cell Phone,Laptop etc.)
For instance,
SC1 : MS → TS1 · · ·TSn → Cell Phone
SC2 : MS → TS1 → TS2 → TS3 · · ·TSn → Laptop
SC3 : MS → TS1 → TS2 · · ·TSn → PDA
Where MS represents a multimedia streaming service, T Sn represents a transcoding service, and
SCn represents a composition service plan. Once the composition plan is created and finalized, the
component hands the composite service to the execution component.

3.1.3. The execution component

The execution component runs the composition service plan, Upon receiving the plan, this com-
ponent establishes and handles a communication link with the first transcoding service in the plan.
Then, it starts the communication by sending the first composite service to that service followed by
the media stream. Once the media stream ends, the components close the connection channel with
the remote service. During communication, the component shall monitor and handle any exception
or error that occurs in the execution. In case of execution failure, the system requests an alternative
composition service plan from the composition component and tries to execute it.

3.2. The transcoding service

Figure 3 shows an architectural view of the main components that constitute the transcoding service:
the dispatcher component and the transcoding component. Both components are further explained
in the following.

3.2.1. The dispatcher component

The dispatcher component represents the interface for the transcoding service that mainly handles
the functionality of the ant objects. When an ant is dispatched by the streaming service, it is usually
sent as a streamed object toward the targeted transcoding service. This component is responsible for
accepting incoming ant objects and forwards them toward their final destinations. Simply, it accepts
the incoming ant object, performs some testing to recognize the final destination node for this ant,
and forces the ant to jump to the next node if the current node is not the final destination. To do
so, the ant should know other neighbor transcoding services, and this can be achieved by inquiring
the registry. In addition, it allows the ant object to access the transcoding service properties usually
fixed and kept in permanent storage.
In addition to the above, this component also acts as a load balancer, which is invisible to the

users as they do not need to know the service from which they can be serviced. This component
monitors the availability of appropriate services, dispatches the incoming multimedia composition

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



M. S. HOSSAIN, A. ALAMRI AND A. EL SADDIK

Figure 3. A decomposed view of the transcoding service.

request to the proxy server where transcoding services are running. It facilitates the selection of
appropriate transcoding services and distributes the media server load based on the QoS collected
by the bio-inspired selection component.

3.2.2. The transcoding component

The transcoding component is responsible for receiving a raw media stream and converting it into
another media stream format. This component accepts a composite service plan followed by a
raw media stream. Upon receiving the request, it first updates the composite service by removing
the entry in the plan corresponding to its service node. Then, it initiates a connection to the next
transcoding service in the plan and sends the composite service first to that remote transcoding
service. Once it starts receiving the raw media stream, it initiates the conversion process and sends
the converted stream immediately to the remote subsequent service using the previously established
connection. In order to do that, the component utilizes temporary storage to store the converted
stream frames before the sending process begins.

3.3. The client

The client is a viewer that allows the user to select and view a media stream of their choosing
based on what is available in the registry. The end-user will only have access to the client and the
client will only display what is available in the registry. That is to say that the client will only
allow the user to select a media stream of a particular format and resolution given the registry states
that a particular media stream is available and that it can be viewed at a particular resolution in a
particular format. However, one should note that the content of the media stream and its format and
resolution are independent of one another since the media content is determined by the streaming
server and the format as well as the resolution is determined by the available transcoders. The client

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



A BIOLOGICALLY-INSPIRED FRAMEWORK

is designed to be lightweight and can thus be installed on any machine in order to allow it to view
the chosen stream.

3.4. The registry service

The registry is a permanent storage where the available media services, streaming services, and
available transcoding services register themselves so that they may be discovered by the other
services that need to use them. The streamers and transcoders are responsible for registering infor-
mation about the video (e.g. QoS, format, and resolution) and they are able to output information
pertaining to their particular ‘contact’ information (i.e. their address). The registry maintains a
reference to all the available media (e.g. video) streams, proxy nodes, and transcoders, and where
transcoders that have the same address are assumed to be on the same proxy node.

4. SYSTEM IMPLEMENTATION AND RESULTS

We implemented the proposed multimedia service management framework by following the SOA
paradigm, where services are registered, queried (searched), and used. In this framework, we did not
use UDDI as in [35]; however, we used a private directory as the registry. In our case, the registry is
a MySQL database that contains three tables; the streaming services table, proxy nodes table, and
the transcoding services table. Each table holds information regarding the type and quality of the
stream provided by the corresponding service. The streaming service is implemented using Java
6.0 and the Java Media Framework 2.1.1e.
The streaming web service publishes, among others, a method that allows the users to request

a multimedia (e.g. video) stream of a particular format and resolution through SOAP messages.
The bio-inspired service selection component uses Java’s capability to serialize and transmit ants
to different transcoding services in the system responsible for collecting QoS information.
Using SOAP over HTTP is not suitable for deliveringmultimedia streamed content because SOAP

messages introduce unnecessary overhead for the streamed media content This overhead includes
among others, processing cost, message parsing, and a marshalling or unmarshalling process [6].
Consequently, we divided the implementation of our multimedia web services into two parts. The
first uses XML-based SOAP messages over HTTP in order to gather all relevant information (such
as port number, type of services, QoS, etc.). The second part uses socket communication in order
to stream the media content.
In order to validate our framework; we deployedfive transcoding services for real-timemultimedia

streaming for different ubiquitous clients. Figure 4 shows the top-level implementation of the
proposed system described above for a video transcoding example. Each of the transcoding services
belongs to a different composition plan, as stated in Section 3.1.2. In this test, an Intel Pentium
4 3.6GHz Windows XP Pro SP2 with 1GB RAM PC was used as the media server. Five Intel
Pentium 4 3.6GHz Windows XP Pro SP2 with 1GB RAM PC were used as transcoding proxies
where transcoding services were running. An Intel Pentium 4 3.5GHz Windows XP Pro SP2 with
512 RAM desktop PC, a PDA (blackberry), one cell phone, and notebook computers were used as
clients. Among these, some of the clients were connected through Wireless LAN 802.11 and some
of these were connected through GPRS.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



M. S. HOSSAIN, A. ALAMRI AND A. EL SADDIK

Figure 4. Detailed top level implementation.

Table I. Transcoding services with QoS (bit rate, frame rate, delay, etc.)

Average Average Average Target
Service Possible bit rate frame rate transcoding client for
no. transcoding services(TS) (Kbps) (fps) delay (ms) the service

TS1 Input=MJPEG 320× 240, 30 fps 48 8.6 92 Cell phone
Output=MJPEG 160× 120

TS2 Input=MJPEG 320× 240,30 fps 320 15.3 100.01 Laptop
output=H.263 352× 288

TS3 Input=MJPEG 320× 240, 30 fps 96 14.5 98.7 PDA
Output=H.263 176× 144

TS4 Input=H.263 352× 288, 30 fps 64 9.2 99.1 PDA
Output=H.263 176× 144

TS5 H.263 176× 144, 15 fps 28 8.8 93.5 PDA
H.263 128× 96

4.1. Multimedia service composition

During the validation tests, we consider a number of transcoding services as shown in Table I.
In this table, we list some transcoding services along with their input or output capabilities and
different QoS attributes (transcoding delay, bit rate, and frame rate). For example, in row 1 we show
that transcoding service 1 (TS1) is capable of taking MJPEG 320× 240, 30 fps as input and deliver

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



A BIOLOGICALLY-INSPIRED FRAMEWORK

MJPEG 160× 120 as output, which is suitable for rendering to the client (e.g. cell phone) at a bit
rate of 48 kbps, frame rate of 8.6 fps, and a transcoding delay of 92ms. It should be mentioned that
we measured the transcoding delay as the time it takes for the captured video stream to go through
the individual transcoders. Now, we describe two composition scenarios for the validation of the
proposed framework.
At first, we consider an application scenario, where a wireless client (e.g a laptop connected

to a Wireless LAN) is accessing a live video stream. The stream is originally captured from a
webcam as MJPEG 320× 240, at 30 fps and delivered to the client as H.263 352× 288 at 15– 20
fps with a bit rate of 245–330 kbps due to its capability of accepting such a media format. In this
particular scenario, the client (Laptop) cannot play any MJPEG stream; it can only render an H.263
352× 288 format, which requires the source content to be transcoded to the appropriate format.
Given the list of transcoding services in Table I, the composition plan we used in this scenario is:
SC1 :MS→TS2 →Laptop.
Here, MS is the multimedia streaming services and TS is the transcoding service used. Note

that only one transcoding service is used in this presented case; the service with the identification
number 2. Therefore, we can call this an atomic composition or simple composition.
We now take a complex composition scenario, where a wireless user (e.g PDA) has a GPRS

connection with a maximum bandwidth of 28.8 kbps and can accept videos with a frame rate
of around 9 frames/s for SQCIF (128× 96) resolution. Similar to the above simple composition
scenario, the video stream is originally captured from a webcam as MJPEG 320× 240, at 30 fps. In
this particular case, the user is unable to get service according to his QoS demands from the available
transcoders’ list. Now, the user (PDA) has to search for and select the appropriate transcoding service
in order to render the multimedia stream that satisfies his QoS requirements, namely the format
(H.263), the PDA’s small display (128× 96), as well as the low network bandwidth (28 kbps) and
frame rate (8.1– 9.4 fps). Given the list of transcoding services in Table I, the composition plan
we used in this scenario is as follows: SC2 :MS→ TS3 → TS5 →PDA. Note that two transcoding
services (TS3 and TS5) are selected and composed with the streaming service. Therefore, we call
this composition a complex composition.

4.2. Scalability

Scalability refers to the capability and flexibility of a system to adapt under increased load (e.g.
increasing number of concurrent request) without sacrificing performance degradation [36]. Scala-
bility should be evaluated to see howwell the system works with the increased number of concurrent
composition requests while meeting the user’s demand by maintaining the performance of the sys-
tem. The experimental results demonstrate our proposed framework’s capability to scale under (a)
an increased number of services in the system (i.e. service registry) and (b) an increased number
of concurrent composition service requests by the users. Our SOA-based system provides linear
scalability, until a certain extent, service load distribution, and increased throughput.

4.2.1. Scalability: average response time vs concurrent requests

To conduct the scalability tests, we ran the system for 1000 concurrent composition requests. As
shown in Figure 5, the response time gradually increases in response to the increased number of

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



M. S. HOSSAIN, A. ALAMRI AND A. EL SADDIK

Figure 5. Scalability over increasing number of concurrent request with varying proxy servers.

concurrent requests. With a higher number of concurrent requests, the curve follows an exponential
trend, where the average response time increases linearly with the number of concurrent requests.
We also find that by adding the number of proxies (where multiple transcoding services are running)
the response time does not increase dramatically. As seen from Figure 5, at 800 concurrent requests
the average response time slightly increases in the system with three transcoding proxies (around
11 050ms) compared with the system with five transcoding proxies (around 11 150ms). From the
results, it seems that the system is linearly scalable as the average response time increases linearly
with the increasing number of concurrent requests and even with an increase in proxy servers, while
serving the same rate of request per second (throughput).

4.2.2. Scalability: the system’s throughput vs concurrent requests

In order to understand the predicted throughput in terms of service requests per second in our
proposed system, we apply Little’s law, which tells us that the average number of concurrent
service composition requests (N ) in the system is equal to the average arrival rate (�) of the service
request to that system, times the average time (T ) spent in that system. This is expressed as follows:
For instance,

N = �T (1)

� = N/T (2)

where, N is the number of concurrent request, � is the throughput of N requests in terms of served
request per second in the system, and T is the response time in seconds.
We used the PushToTest Testmaker 5.1 [37] for testing scalability over the system’s throughput.

PushToTest Testmaker 5.1 is suitable for testing SOA-based applications and web applications. In
order to test the scalability, TestThread is required to send a request to the service. We ran one

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



A BIOLOGICALLY-INSPIRED FRAMEWORK

100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

250

300

Concurrent requests

T
hr

ou
gh

pu
t (

re
qu

es
t/s

ec
)

Figure 6. Scalability over systems’ throughput (request per second).

TestThread for each concurrent request, record, and saved the test results to the log file. We ran the
test for 1000 concurrent requests. For this test, we used the same media server as a web server for
accepting requests, and the desktop PC as the test client where a number of concurrent TestTthreads
were running.
Figure 6 shows that the increased throughput is directly proportional to the increased number

of concurrent requests, i.e. throughput increases linearly with the number of received requests
while keeping the average system response time constant regardless of the number of concurrent
requests. As shown in Figure 6, at 200 concurrent requests, the proposed system handles 1600
requests in 20 s, which results in a throughput of 80 (� = 1600

20 ) requests per second with a 2.5
(T = N/� = 200

80 = 2.5) second response time. In order to keep the response time at 2.5 s, the same
system at 400 concurrent request handles 3200 requests in 20 s, which results in a throughput of
160 (� = 3200

20 ) requests per second. Therefore, we find that with the increase in concurrent requests,
the throughput also increases in the same manner, which demonstrates perfect scalability. In other
words, the increasing number of requests does not affect the system’s response time. In this test,
perfect scalability was achieved as long as we had about 800 concurrent requests. After that, it
starts to decrease. In order to have the desired throughput or to solve this problem, the media server
load has to be controlled or distributed to another serving site. In this case, the load is distributed
to different proxy servers where transcoding services are running. A bio-inspired service selection
component facilitates selecting the appropriate transcoding services and distributing the load. In
the next section, this is described.

4.3. Load distribution

We tested the system for load balancing through simulation. We used multithreaded clients in Java
to emulate the same number of concurrent requests as above (1000) and sent them to the media

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



M. S. HOSSAIN, A. ALAMRI AND A. EL SADDIK

0 500 1000 1500 2000 2500 3000 3500
4

6

8

10

12

Time (sec)

M
bi

t

10 20 30 40 50 60
6

7

8

9

10

11

Time (60 sec)

M
bi

t

(a)

(b)

Figure 7. The media server’s outbound traffic for the concurrent requests: (a) over a period of one hour (3600 s)
and (b) over a period of 1min (60 s).

server. The simulation was 1 h long and was repeated 5 times under the same computational power
conditions. We configured our media servers to stream data at a maximum capacity of 10Mbps.
Figure 7(a) shows that the server load can exceed 10 Mbps at some instances in time. To clearly

present this fact, Figure 7(b) zooms a 60-s segment. Taking into consideration that the media
servers’ stream videos with a maximum bandwidth of 10Mbps, it is obvious that there is a load
balancing problem since the load is not constant. In order to solve this problem, the load should
be distributed among other proxy servers. We use bio-inspired service selection algorithms as a
distributed solution.
Figure 8(a) shows that our proposed bio-inspired approach described in Section 3 results in fewer

overloads as the transcoding computation load is distributed among the different proxies. This is due
to the dispatcher component (Section 3.2.1) that can dynamically distribute computational tasks to
transcoding services. We compare the results of our proposed method with a traditional algorithm
based on the distributed Bellman Ford [38,39]. As shown in Figure 8(b), our proposed method out-
performs the traditional approach; on average, the overload is reduced by approximately 1.5 times.

5. CONCLUSION

The combination of SOA and a biologically inspired mechanism has the potential to fulfill the
requirements and challenges of scalability, flexibility, and reusability of distributed multimedia

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



A BIOLOGICALLY-INSPIRED FRAMEWORK

0 100 200 300 400 500 600 700
10

15

20

25

30

35

Time (min)

N
um

be
r 

of
 o

ve
rlo

ad
s

 

 

100 200 300 400 500 600 700
0

0.5

1

1.5

2

2.5

Time (min)

Lo
ad

 r
at

io

Traditional approcah

(a)

(b)

Figure 8. The comparison of our bio-inspired approach against the
traditional load distribution approach.

delivery. To the best of our knowledge, this is one of the first ever works that brings together
the SOA paradigm as well as a biologically inspired mechanism into the multimedia domain, and
more specifically into multimedia service management for a ubiquitous environment. We evaluated
and compared our proposed system through implementation and simulation. We discussed how our
system scales under an increased number of composition requests. In the future we intend to explore
robustness of the proposed framework, particularly under a hostile ubiquitous environment.

REFERENCES

1. Papazoglou MP, van den Heuvel WJ. Service oriented architectures: Approaches, technologies and research issues. The
International Journal on Very Large Data Bases (VLDB) 2007; 16(3):389–415.

2. Papazoglou MP, van den Heuvel WJ. Web services management: A survey. IEEE Internet Computing 2005; 9(6):58–64.
3. Erradi A, Padmanabhuni S, Varadharajan N. Differential QoS support in web services management. Proceedings of the

International Conference on Web Services (ICWS ’06), Chicago, U.S.A., September 2006; 781–788.
4. Nowlan MF, Blake MB. Intelligent agent communication and collaboration for web services management. Proceedings

of the 16th IEEE International Workshops on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE’07), Paris, France, 18–20 June 2007; 18–23.

5. Alamry A, Eid M, El Saddik A. Classification of the state of the art dynamic web services composition techniques.
International Journal of Web and Grid Services 2006; 2(2):148–166.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



M. S. HOSSAIN, A. ALAMRI AND A. EL SADDIK

6. Younas M, Awan IU, Duce D. An efficient composition of web services with active network support. Elsevier Expert
Systems with Applications 2006; 31(4):859–869.

7. Gu X, Nahrstedt K, Yu B. Spidernet: An integrated peer-to-peer service composition framework. Proceedings of the
13th IEEE International Symposium on High performance Distributed Computing, Honolulu, HI, U.S.A., 4–6 June 2004;
110–119.

8. Ponnekanti SR, Fox A. SWORD: A developer toolkit for web service composition. Proceedings of the 11th World Wide
Web Conference, Honolulu, HI, U.S.A., 4–6 June 2004.

9. Jureta I, Faulkner S, Achbany Y, Saerens M. Dynamic web service composition within a service-oriented architecture.
IEEE International Conference on Web Services (ICWS 2007), Salt Lake City, UT, U.S.A., July 2007; 304–311.

10. Bruneo D, Guarnera M, Zaia A, Puliafito A. Grid based architecture for multimedia services management. Proceedings
of the First European Across Grids Conference, Antiago de Compostela, Spain, February 2003.

11. Jin J, Nahrstedt K. QoS-aware service management for component-based distributed applications. ACM Transactions on
Internet Technology 2008; 8(3):1–31.

12. Nahrstedt K, Balke WT. Towards building large scale multimedia systems and applications: Challenges and status.
Proceedings of the First ACM International Workshop on Multimedia Service Composition, Hilton, Singapore, 2005;
3–10.

13. Kalasapur S, Kumar M, Shirazi B. Seamless service composition (SeSCo) in pervasive environments. Proceedings of
the First ACM International Workshop on Multimedia Service Composition, Hilton, Singapore, 2005; 11–20.

14. Nahrstedt K, Balke WT. A taxonomy for multimedia service composition. Proceedings of the 12th ACM International
Conference on Multimedia, New York, NY, U.S.A., 10–16 October 2004; 88–95.

15. Dorigo M, Di Caro G, Gambardella LM. Ant algorithms for discrete optimization. Artificial Life 1999; 5(2):137–172.
16. Hossain MS, El Saddik A. A biologically inspired multimedia content repurposing system in heterogeneous network

environments. Springer/ACM Multimedia Systems Journal 2008; 14(3):135–143.
17. Hossain MS, Alamri A, El Saddik A. A framework for QoS-aware multimedia service selection for wireless clients.

Proceedings of the 3rd ACM Workshop on Wireless Multimedia Networking and Performance Modeling (WMuNeP’2007),
Chania, Greece, 2007.

18. Babaoglu Ö, Canright G, Deutsch A, Di Caro G, Ducatelle F, Gambardella LM, Ganguly N, Jelasity M, Montemanni
R, Montresor A, Urnes T. Design patterns from biology for distributed computing. ACM Transactions on Autonomous
and Adaptive Systems (TAAS) 2006; 1(1):26–66.

19. Ding Y, Sun H, Hao K. A bio-inspired emergent system for intelligent web service composition and management.
Elsevier Knowledge-Based Systems 2007; 20(5):457–465.

20. Musunoori SB, Horn G. Ant-based approach to the quality aware application service partitioning in a grid environment.
Proceedings of IEEE Congress on Evolutionary Computation, Vancouver, BC, Canada, 16–21 July 2006; 2604–2611.

21. Chiang F, Braun R, Agbinya JI. Self-configuration of network services with biologically inspired learning and adaptation.
Springer Journal of Network and Systems Management 2007; 15(1):87–116.

22. Carreras I, Chlamtac I, De Pellegrini F, Miorandi D. BIONETS: Bio-inspired networking for pervasive communication
environments. IEEE Transactions on Vehicular Technology 2007; 56(1):218–229.

23. Boonma P, Suzuki J. BiSNET: A biologically inspired middleware architecture for self-managing wireless sensor networks.
Elsevier Computer Networks 2007; 51(16):4599–4616.

24. Thanh DV, Jørstad I. A service-oriented architecture framework for mobile services. Proceedings of the Advanced
Industrial Conference on Telecommunications Workshop (AICT2005), Lisbon, Portugal, July 2005; 65–70.

25. Sanchez-Nielsen E, Martin-Ruiz S, Rodriguez-Pedrianes J. An open and dynamical service oriented architecture for
supporting mobile services. Proceedings of the 6th International Conference on Web Engineering (ICWE ’06), ACM:
New York, NY, U.S.A., 2006; 121–128.

26. Amoretti M, Bertolazzi R, Reggiani M, Zanichelli F, Conte G. Designing grid services for multimedia streaming in an
e-learning environment. Concurrency and Computation: Practice and Experience 2006; 18(8):911–923.

27. Verdi FL, Magalhães MF, Cardozo E, Madeira ERM, Welin A. A service oriented architecture-based approach for
interdomain optical network services. Springer Journal of Network and Systems Management 2007; 15(2):141–170.

28. Agrawal R, Bayardo RJ, Gruhl D, Papadimitriou S. Vinci: A service-oriented architecture for rapid development of web
applications. Elsevier Computer Networks 2002; 39(5):523–539.

29. Jørstad I, Dustdar S, Thanh DV. A service oriented architecture framework for collaborative services. Proceedings of
the 14th IEEE International Workshops on Enabling Technologies (WETICE 2005), Linköping, Sweden, June 2005;
121–125.

30. Wu W, Fox G, Bulut H, Uyar A, Huang T. Service oriented architecture for VoIP conferencing. International Journal
of Communication Systems 2006; 19(4):445–461.

31. Chinnici R, Moreau JJ, Ryman A, Weerawarana S. Web services description language (WSDL) version 2.0 part 1: Core
language. Online: http://www.w3.org/TR/wsdl20/ [December 2007].

32. Gudgin M, Hadley M, Mendelsohn N, Moreau J, Nielsen H, Karmakar A, Lafon Y. SOAP version 1.2 part 1. Online:
http://www.w3.org/TR/2007/REC-soap12-part1-20070427/ [December 2007].

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe



A BIOLOGICALLY-INSPIRED FRAMEWORK

33. Di Caro G, Dorigo M. AntNet: Distributed stigmergetic control for communications networks. Journal of Artificial
Intelligence Research (JAIR) 1998; 9:317–365.

34. Xu D, Wichadakul D, Nahrstedt K. Resource-aware configuration of ubiquitous multimedia services. Proceedings of the
IEEE International Conference on Multimedia and Expo (ICME-2000), New York, NY, U.S.A., vol. 2, July 30–August 2,
2000; 851–854.

35. Clement L, Hately A, Riegen CV, Rogers T. UDDI Version 3.0.2, UDDI Spec Technical Committee Draft. OASIS UDDI
Spec TC, 2004.

36. Cohen F. FastSOA: The Way to Use Native XML Technology to Achieve Service Oriented Architecture Governance,
Scalability, and Performance (1st edn). Morgan Kaufmann (Elsevier): San Fransisco, CA, November 2000.

37. Pushtotest testmaker 5.1. Online: http://docs.pushtotest.com/docs/index.html [April 2008].
38. Bertsekas D, Gallager R. Data Networks (2nd edn). Prentice-Hall: Englewood Cliffs, NJ, U.S.A., December 1991.
39. Hossain MS, El Saddik A. Scalability measurement for multimedia repurposing system. International Journal of Advanced

Media and Communication 2008; 2(3):267–287.

Copyright q 2009 John Wiley & Sons, Ltd. Concurrency Computat.: Pract. Exper. (2009)
DOI: 10.1002/cpe


