

1

Abstract— Availability of sophisticated handheld devices has made possible different multimedia

applications to run on the go. Nevertheless, the limitations of the screen resolution and the processing

capability of these devices prevent us from representing multimedia information in the same way as is done

for regular displays. Simultaneously, with the advances in wireless communication, multimedia content

transmissions now have become possible through the 3G and beyond 3G networks. However, the

communication capabilities of different devices differ due to the limited bandwidth which varies because of

either signal fading or network unavailability. In consequence, the importance of adapting the media

according to users’ context sets the primary challenge towards seamless access in a ubiquitous computing

environment. Conventional video processing approaches entail cascaded operations of decompression,

processing and recompression within an adaptation scenario. In this paper, we present a framework based on

MPEG-21 gBSD that provides adaptation, encryption and authentication of video, specifically H.264

bitstream, in the compressed domain. The proposed scheme does not necessitate any cascaded compression

and decompression, and has demonstrated faster performance in experimental results compared to cascaded

approach. A complete 3-in-1 system architecture is detailed along with the experimental evaluations of the

system supporting the design concept.

Index Terms—Multimedia communication, video adaptation, video authentication, video encryption,

H.264, MPEG-21, gBSD

I. INTRODUCTION

BIQUITOUS computing concept permits end users to have access to multimedia and digital content anywhere, anytime

and in anyway they want. Today’s multimedia consumers expect to access content using any platform, from PC or

laptop to cell phone, PDA, Sony PSP, iPod, and many other new and upcoming networked-computing devices, and

over various kinds of networks be it high speed DSL, wireless LAN, or others. Indeed the driving force behind

Universal Multimedia Access (UMA) demands a generic adaptation procedure to access multimedia contents

seamlessly in both wireless and wired networks. Since the diversity of devices via which multimedia content are

accessed and interacted with has grown significantly, and continues to do so, it is infeasible to adapt the playback

environment to accommodate all various media formats, which continue to grow. The efficient solution is to adapt

the media content for the playback environment used by the consumer and providing them access to a large variety

of items in an interoperable manner. Simultaneously, security and digital right management (DRM) of multimedia

data has become an emerging concern, especially in UMA networks. Therefore, encryption and authentication

operations should be taken care of not only for serving sensitive digital content, but also for offering security and

integrity as an embedded feature of the adaptation practice. A straightforward solution to adaptation, encryption and

authentication can be achieved by allocating some intermediary nodes in between the content provider and the

consumer to perform manifold decoding and encoding operations such as decompression, adaptation, encryption,

authentication, and recompression. While simple, this approach requires a large amount of processing time or

processing power on the intermediary nodes, not to mention absolute trust in them, which can be compromised by a

third party. An alternative solution would be to produce and store content in several formats taking into account a

The authors are with the School of Information Technology and Engineering, University of Ottawa, 800 King Edward Ave., Ottawa, ON,

Canada, K1N 6N5 (phone: 1 613 562 5800 ext. 6206, e-mail: {riqbal|shervin}@discover.uottawa.ca; {elsaddik|jyzhao}@site.uottawa.ca).

Compressed-Domain Video Processing for

Adaptation, Encryption, and Authentication

Razib Iqbal, Student Member, IEEE, Shervin Shirmohammadi, Senior Member, IEEE, Abdulmotaleb

El Saddik, Senior Member, IEEE, and Jiying Zhao, Member, IEEE

U

2

wide variety of possible user devices and preferences, making an appropriate selection at the delivery time.

However, new consumer devices with different capabilities and network access are emerging on a daily basis and it

is impractical to pre-store all media for all possible contexts. Another approach is to perform partial selection of

streams from a multiple pre-encoded bitstream. However, for real time applications, it could be impractical to apply

the above solutions because of the processing time, availability of resources, and limited space. A real-time and

efficient solution to perform the necessary operations of adaptation, encryption, and authentication in the compressed

domain, without decompression and recompression or without storing the media in various formats, will be a

significant expansion.

In this paper, we present an integrated system for compressed-domain video processing to achieve the above goal.

We propose a 3-in-1 system by incorporating our recent research in compressed domain video authentication to our

previous works in compressed video adaptation [1] and encryption [2]. Our architecture utilizes MPEG-21 generic

Bitstream Syntax Description (gBSD) to perform the necessary modifications in the compressed bitstream, hence it

is codec-independent in that intermediate nodes performing the operations need not have knowledge of the specific

codec in use. To the best of our knowledge, no other work presents an MPEG-21 based architecture that performs

adaptation, encryption, and authentication of H.264 video, entirely in the compressed domain. The architecture is

portrayed in the form of a proof of concept prototype where temporal adaptation of H.264 video has been performed

for both pre-coded and live video streams. We also show that exploiting the gBSD, a perceptual encryption scheme,

and a hard authentication technique can be integrated in the adaptation system for encryption and authentication of

the video content respectively, and demonstrate this feasibility with performance evaluation of the prototype and its

comparison with a conventional cascaded system. The rest of the paper is organized as follows: in section II, the

motivation for utilizing MPEG-21 gBSD and H.264 video format is discussed. A brief review of the related work is

detailed in Section III. The proposed architecture for video adaptation procedure for both pre-coded and live video

streaming is depicted in Section IV. Section V extends the application of Digital Item (DI) towards authentication

and encryption of the adapted video data. A discussion on our work is presented in section VI. Finally, the paper

ends with some insight of what can be extended in the future in Section VII.

II. MOTIVATION FOR APPLYING MPEG-21 GBSD AND H.264

Without a standard metadata support, variety and incompatibility of adaptation approaches in a distributed

multimedia environment makes adaptation procedures unlikely. ISO/IEC 21000 Multimedia Framework was

initiated because of the lack of interoperability among advanced multimedia packaging and distribution applications.

Part 7, Digital Item Adaptation (DIA), of the MPEG-21 framework [3] specifies the syntax and semantics of tools

that may be used to assist adaptation of a Digital Item. A DI is denoted as a bitstream together with all its relevant

descriptions. The bitstream can be audio, video, or any other media; in simplified terms, the DI is basically the media

such as audio, video, etc plus its metadata description. The advantage of MPEG-21 DIA is that it will benefit all the

stakeholders in the multimedia delivery and consumption chain (e.g. Service and Content Providers, Network

Operators, Device Manufacturers and End Users) in terms of interoperability and compatibility of products. This

standard can be used in any application domain because it has been designed in a protocol and application

independent way. An overview of DIA, its use in multimedia applications, and report on some of the ongoing

activities in MPEG on extending DIA for use in rights governed environments are available in the literature [4][5]

and are beyond the objective of this paper.

The concept of MPEG-21 DIA and the structure of the DIA engine are illustrated in Figure 1. From this figure, we

can see that, a DI is subject to a Resource Adaptation Engine and a Description Adaptation Engine, which together

produce the adapted Digital Item. In the specification, DIA tools are clustered into several categories. For example,

Bitstream Syntax Description (BSD) describes the syntax (the high-level structure) of a binary media resource such

as video. With Bitstream Syntax Description Language (BSDL), which is an XML Schema based language and

standardized in the MPEG-21 framework, it is possible to design specific Bitstream Syntax Schema (BS Schema)

describing the syntax of a particular coding format. A normative processor named BSDtoBin is specified in MPEG-

21 to generate the adapted bitstream for BSDL. Since, BSDL provides a way for describing bitstream syntax with a

3

codec specific BS Schema, an adaptation engine consequently requires knowing the specific schema. Therefore, a

generic Bitstream Syntax Schema (gBS Schema) is specified in the MPEG-21 framework to offer a format

independent adaptation procedure. The gBS Schema introduces the means to describe hierarchies of syntactical units

and addressing means for efficient bitstream access. A description conforming to this schema is called a generic

Bitstream Syntax Description (gBSD), which provides an abstract view on the structure of the bitstream that can be

used in particular when the availability of a specific BS Schema is not ensured. The gBSD is essentially a metadata

definition of the media, written in the form of XML. For example, for video, the gBSD represents each frame’s

number, starting position in the bitstream, frame type and length of each frame, among other information, as seen in

Figure 2. The benefit of applying gBS Schema is mainly the Codec independence, Semantic marking of syntactical

elements, and Hierarchical descriptions of a bitstream that allows grouping of bitstream elements for efficient,

hierarchical adaptations. To generate adapted bitstream, the gBSDtoBin processor is normatively defined in the

MPEG-21 framework for gBS Schema. In our architecture, we make extensive use of the gBSD for all of the

compressed domain operations on the video.

FIGURE. 1. MPEG-21 DIGITAL ITEM ADAPTATION

FIGURE. 2. SAMPLE GBSD REPRESENTATION

In the past decade, a fair number of video codecs like H.261, MPEG-2, and H.263 have evolved. H.264 is the

latest video coding and compression standard by ITU-T and ISO/IEC as International Standard MPEG-4 part 10

Advanced Video Coding (AVC). The advanced compression technique, improved perceptual quality, network

friendliness and versatility of the codec [6][7] drives it to outperform all the previous video coding standards. One of

the major reasons behind choosing H.264 for our framework is its multiple reference pictures for motion

4

compensation. In H.264, slice sizes are flexible where a picture can be split into one or several slices. Slices are self-

contained and can be decoded without using data from other slices. H.264 offers an entropy coding design which

includes Context-Adaptive Binary Arithmetic Coding (CABAC) and Context Adaptive Variable Length Coding

(CAVLC). Since in H.264 data is entropy coded, in order to achieve byte-alignment, sequence of bits is being

padded by the encoder when necessary. Bitstream Data Unit (BDU) is defined as a unit of the compressed data

which may be decoded independently of other information at the same hierarchical level. A BDU can be for example

a frame or a slice of a frame, and is used in our approach for temporal adaptation and authentication of the adapted

video respectively.

III. RELATED WORK

There have been many research activities and advances in video adaptation, encryption and authentication in the

past decade. Prominent research revealed during our study will be highlighted in this section. In [8], a comprehensive

overview of digital video transcoding in terms of architecture, techniques, quality optimization, complexity

reduction, and watermark insertion was presented. In [9], authors investigated quality adaptation algorithms for

scalable encoded variable bit rate video over the internet to maximize perceptual video quality by minimizing quality

variation. Bonuccellit et al. [10] introduced buffer-based strategies for temporal video transcoding adding a fixed

transmission delay for buffer occupancy in frame skipping. A frame is skipped if the buffer occupancy is greater than

some upper value, and it is always transcoded if the buffer occupancy is lower than some lower value, provided the

first frame (i.e. the I-frame) is always transcoded. Group of Pictures (GOP) level rate adaptation scheme was

introduced in [11] for a single stream, variable target bitrate H.264 encoder, which allows each group of pictures to

be encoded at a specified bitrate, using a dynamically updated table to select the starting quantization parameter for

each GOP. Block Adaptive Motion Vector Resampling (BAMVR) method was proposed in [12] to estimate motion

vector for frame rate reduction in H.264. However, the transcoder follows straightforward cascading architecture of

the decoder and encoder. Devillers et al. proposed a BSD based adaptation in streaming and constrained

environments [13]. In their framework, the authors emphasized on BSD based adaptation applying BS Schema and

BSDtoBin processors. In our case, we have used gBSD, which provides an abstract view on the structure of the

bitstream that can be used in particular when the availability of a specific BS Schema is not ensured, and gBSDtoBin

processor is being used for transformation.

The simplest way to encrypt video is perhaps to consider the whole stream as a 1-D array and then encrypt this 1-

D stream with the encryption key. However, with advancement of time, video encryption mechanism considering

sensitivity of digital video has been developed for layered video compression techniques. Partial or selective

encryption algorithms such as [14] and [15] are deployed on selective layers. In this case, the content is encrypted

and thus decrypted exploiting the inherent properties of the video coding layer(s). On the other hand, for video

authentication, watermark can be embedded in the uncompressed domain, during the compression process or after

the compression process. The DCT coefficient based embedding systems [16]-[18] embed binary watermark bits in

the DCT domain derived from different extracted features, for example, a human visual model adapted for a 4×4

DCT block [16], relations between predicted DCT coefficients and real DCT coefficients [17]. Watermarking

method proposed by Qiu et al. [18] embeds a robust watermark into the DCT domain and a fragile watermark into

motion vectors during H.264 compression. J. Zhang and A.T.S. Ho [19] proposed a scheme that uses the tree-

structured motion compensation, motion estimation and Lagrangian optimization of the H.264 standard. The

authentication information is represented by a binary watermark sequence and embedded into video frames. Dima

Pröfrock et al. [20] proposed a new transcoder, which analyses the original H.264 bit stream, computes a watermark,

embeds the watermark for hard authentication and generates a new H.264 bitstream. All of these techniques either

embed watermarks during the encoding process of the H.264 video [18][19] or employ cascaded decompression and

recompression operations [16][17][20] to analyze H.264 bitstream and embed the watermark.

From the above discussion, we can notice that the literature contains extensive research on video adaptation, video

encryption and video authentication approaches. However, a complete system entailing adaptation, encryption and

authentication in one single framework operating in the compressed domain is lacking. Our proposed 3-in-1 system

5

for H.264 video, conforming to MPEG-21 DIA, is a realistic inspiration where any intermediary MPEG-21

compliant host can adapt, encrypt and authenticate the video without requiring prior knowledge of the video codec or

bitstream.

IV. THE VIDEO PROCESSING SYSTEM

A systematic procedure for designing video adaptation framework involves identifying adequate entities (e.g.

pixel, frame etc.) for adaptation as well as identifying a feasible adaptation technique (e.g. re-quantization, frame

dropping etc.) [21]. In our temporal adaptation framework, I-frames and P-frames in each frameset
1
 are the entities;

and skipping frames from the original compressed bitstream dynamically is the chosen adaptation technique. Our

design decision behind choosing this technique is made with the goal of creating a simple and computationally

efficient adaptation engine. On the other hand, encryption is a process of scrambling or converting data known as

Plaintext into a form, called a Ciphertext that cannot be interpreted by an unintended user or receiver. For

authentication, a customized digital signature is inserted in a suitable marking space in the content itself. Now, to

encrypt and authenticate a video content in the compressed domain requires the plaintext and the marking space to be

selected in the compressed domain dynamically. The system performing the above three operations is shown in

Figure 3. In this section, we explain the adaptation part in detail, and leave encryption and authentication for section

V.

FIGURE. 3. PROPOSED ARCHITECTURE FOR ADAPTATION, ENCRYPTION AND AUTHENTICATION

A. Generation of Digital Item

The DI (video bitstream along with its gBSD) is the basic content for resource server or content provider on the

delivery path. In an MPEG-21 framework, the generation of original Bitstream Syntax Description from binary data

(BintogBSD) is not normatively specified. In our approach, gBSD is generated during the encoding process of the

bitstream because the encoder best knows the structure of the bitstream. For our prototype, we have enhanced the

ITU-T reference software implementation JM 9.5 [22] with gBSD generation functionality. The gBSD consists of

frame number, frame start, frame type and length of each frame for temporal adaptation. Considering that B frames

are not usually used for motion compensation and reconstruction of other frames, configuration can be set to encode

the raw YUV frames as only Intra frame (I-frame) and Inter frame (P-frame) in the encoder control. It is obvious that

more I-frames in each frameset would increase the video quality at the cost of increased file size. In our system, in

every frameset before and after adaptation, the very first frame is always an I-frame. This I-frame works as the

1 For implementation convenience, ‘Frameset’ has been assumed to represent the number of frames equal to the frame rate at which the raw

video is being encoded (usually 30fps).

6

reference frame and is used for random access. FrameSkip (number of frames to be skipped in input) and FrameRate

(frame rate per second) for the original H.264 bitstream are left as variable. The final output from the H.264 encoder

is the gBSD and encoded H.264 video, which together shape the Digital Item for adaptation. If B-frames are used

then the frame skipping procedure (described in Adaptation Module later) also considers these frames to compute the

frames that need to be dropped for achieving the target frame rate, provided B-frames are included in the

computation of Frameset.

B. Adaptation Module

In the adaptation module, the adaptation process is completed in 2 steps – gBSD transformation characterizing the

resulting media bitstream via XSLT [23], and video bitstream transformation based on the transformed gBSD. For

the gBSD transformation, adaptation characteristics for the adapted gBSD are formed in an XSL style sheet
2
 which is

fed to the XSLT processor to transform the original gBSD. The XSLT processor takes a tree structure as its input by

parsing the gBSD and generates another tree structure as its output into adapted gBSD. Template rules assembled in

the style sheet are predisposed to filter the original gBSD based on the actual encoding frame rate and target frame

rate. A frame skip pattern based on the original frame rate and required frame rate is devised to identify the

appropriate nodes in the source tree of the gBSD. If the original encoding frame rate is 30frames per second (fps),

mechanism enables a consistent frame-dropping pattern for a target frame rate in between 1 to 29fps. For example,

for any DI, if the target frame rate is 10fps, then the selected frame numbers to be dropped will be same for all DIs.

The pseudo-code of this strategy is shown below:

FrameSkip(newFrameRate,oldFrameRate)
{
 a=1, b=1;
 temp = newFrameRate/oldFrameRate;
 if(newFrameRate<oldFrameRate && newFrameRate!=0)
 {
 while(a<oldFrameRate)
 {
 copyFrame(a);
 a = ceiling(1+b*temp);
 b++;
 }
 }
}

The next step is the generation of the adapted bitstream using the transformed gBSD. Adapted bitstream

generation consists of 3 steps - parsing the adapted gBSD, extracting the parsed gBSD information from the video

and writing the adapted video stream to a buffer file. In every frameset, we ensure 1 I-frame for every 9 consecutive

frames, which leads to having 3 I-frames for each second of video (and not only one I-frame). To handle multiple

frame dependency, if the reference frames (I-frames or P-frames) are dropped then the very last available I-frame of

that frameset is used as the reference frame. In the case of low target frame rate (i.e. less than 10fps), the very first I-

frame in that frameset is considered as the reference frame. This avoids any perceptible distortions due to frame

dropping. The final output is the adapted H.264 format compliant bitstream.

C. Live Adaptation

For XSLT, complete XML description must be loaded before being adapted. This is a shortcoming of applying the

above adaptation architecture in live scenarios. To overcome this shortcoming and to offer live adaptation on top of

the aforementioned implementation, we propose to process the live video streams as small clips in a pseudo live

fashion. All the clips are encoded in H.264 format and have their own gBSD. These gBSDs are adapted for temporal

adaptation and thus applied to gBSDtoBin process to serve a specific adaptation request. To process live streams,

2 Style sheet defines the template rules and describes how to display a resulting document.

7

significant considerations need to be given to the frame rate and resolution of the captured frames because the

processing time greatly varies for the higher frame rate and resolution. Moreover, depending on the webcam, video

clips might need type conversion and pre-processing for specific resolution before putting it in the adaptation module

to create DIs, adapt and transmit. As a result, streaming is vulnerable to an obvious fixed delay at the beginning, for

pre-processing and adaptation of clips. For presentational applications, longer initial delays are usually acceptable in

this type of live adaptation.

D. Evaluation of the Adaptation Module

The implementation scheme applying MPEG-21 DIA presented above is purely a temporal one, so the quality

degradation of the adapted video is due to frame dropping only. The very first I-frame in each frameset is always set

aside to be used as the reference frame for low target frame rates. To evaluate the prototype, an Intel P4 3.4Ghz Win

XP Pro SP2 with 1GB RAM PC was selected as the media resource server. Table I shows the DI generation

performance for the pre-coded video adaptation of four test sequences – Airshow, Carphone, Container and Corvette.

Each of the video sequences consists of 300 frames of frame size CIF (352×288), QCIF (176×144) and SQCIF

(128×96). In the encoder control, for different frame sizes, same configuration setting of different parameters (e.g.

period of I-frames, number of reference frames, search range, bit depth for luminance and chrominance etc.) is used.

Here we can see that, for live video adaptation, SQCIF frame size is appropriate because the DI generation

performance for SQCIF video is greater than 15 fps.

TABLE I

DIGITAL ITEM GENERATION PERFORMANCE

Resolution Airshow Carphone Container Corvette

SQCIF 11.976s (@25.68fps) 11.628s (@25.23fps) 11.228s (@25.73fps) 11.761s (@25.51fps)

QCIF 23.640s (@12.69fps) 23.169s (@12.95fps) 23.251s (@12.80fps) 24.162s (@12.42fps)

CIF 99.190s (@3.02fps) 94.893s (@3.16fps) 97.152s (@3.09fps) 98.288s (@3.05fps)

Frame Rate : 30 fps, Intra Period: 9, Total Frames: 300, QP = 28

TABLE II

TEMPORAL ADAPTATION PERFORMANCE: COMPRESSED DOMAIN (PROPOSED) VERSUS CASCADED

Airshow Carphone Container Corvette
Resolution New FPS

Proposed Cascaded Proposed Cascaded Proposed Cascaded Proposed Cascaded

5 0.597s 32.124s 0.435s 32.062s 0.419s 32.248s 0.653s 32.389s

10 0.825s 34.010s 0.798s 33.851s 0.659s 34.019s 0.928s 34.567s SQCIF

15 1.080s 36.053s 0.968s 35.534s 0.832s 36.032s 1.219s 36.361s

5 0.569s 36.648s 0.594s 36.782s 0.578s 36.698s 0.972s 37.031s

10 0.968s 40.268s 1.106s 40.856s 1.172s 40.538s 1.358s 41.007s QCIF

15 1.438s 59.001s 1.469s 44.484s 1.765s 44.362s 2.016s 45.236s

5 1.032s 58.079s 0.950s 62.879s 0.719s 63.323s 1.878s 60.402s

10 2.031s 77.884s 1.516s 78.553s 1.422s 79.819s 3.110s 78.751s CIF

15 3.094s 96.112s 2.280s 94.322s 2.157s 98.749s 4.688s 97.424s

Table II presents the temporal adaptation performance of the proposed adaptation architecture compared to that of

a cascaded approach for the above four video sequences. In the cascaded approach, the decoder available in the ITU-

T sample implementation JM 9.5 is used to decode the video; then the adapted video is re-encoded after the

necessary adaptation (i.e. frame dropping to achieve target frame rate). From Table II, we can see that temporal

adaptation time differs for different video sequences in terms of resolution and required frame rate. As can be seen,

our approach significantly outperforms the cascaded approach. Table III & Table IV gives an average time profiling

of the adaptation operations for both the proposed and the cascaded approaches respectively. Even though adaptation

8

in the compressed domain has a larger footprint than the cascaded approach in terms of the encoding (i.e. DI

generation) and the adaptation procedures, it is considerably faster during the actual adaptation process (as can be

seen in Table II). From a cost-benefit standpoint, since encoding will be done only once in a certain video’s life time

and adaptation will be done many times (for different user contexts) as needed, the compressed-domain approach is

much more efficient. It is obvious that higher target frame rate necessitates relatively higher computation time

because the adaptation engine processes more frames and their relative dependencies.

TABLE III

ADAPTATION TIME PROFILING OF THE VIDEO SEQUENCES (PROPOSED APPROACH)

gBSD Transformation Video Adaptation

Resolution New FPS Original gBSD

Parsing

Stylesheet

Parsing

XSLT

Transformation

Adapted gBSD

Parsing
Adapting Video

5 5.69 % 2.94 % 4.52 % 1.98 % 86.50 %

10 3.66 % 1.88 % 4.12 % 1.81 % 83.67 % SQCIF

15 2.88 % 1.48 % 3.78 % 1.71 % 83.42 %

5 4.62 % 2.38 % 6.49 % 1.34 % 86.01 %

10 2.77 % 1.40 % 7.41 % 1.05 % 87.95 % QCIF

15 1.94 % 0.97 % 7.80 % 1.18 % 88.84 %

5 2.64 % 1.35 % 7.79 % 0.84 % 90.84 %

10 1.49 % 0.79 % 10.49 % 0.66 % 93.00 % CIF

15 1.04 % 0.51 % 12.01 % 0.64 % 94.15 %

TABLE IV

ADAPTATION TIME PROFILING OF THE VIDEO SEQUENCES (CASCADED APPROACH)

Resolution New FPS Decoding Adapting Video Re-encoding

5 93.72 % 0.05 % 6.23 %

10 88.48 % 0.07 % 11.44 % SQCIF

15 83.86 % 0.09 % 16.05 %

5 89.24 % 0.07 % 10.69 %

10 80.74 % 0.08 % 19.18 % QCIF

15 73.52 % 0.09 % 26.39 %

5 77.83 % 0.38 % 21.79 %

10 60.33 % 0.41 % 39.27 % CIF

15 49.18 % 0.58 % 50.24 %

TABLE V

LIVE ADAPTATION PERFORMANCE

Captured

Video
Type

AVI

To

YUV

YUV

To

DI

Adapt

Adapted

Video

SQCIF

(128x96)

SQCIF

(128x96)

15 fps 1-14 fps

Length

20 s

AVI 1.5 s 7.5 s 1.5 s

Length

20 s

Table V shows the adaptation performance of the proposed adaptation system for a live video session. Notice that

AVI is used here simply due to the output format of the webcam in use. If the camera outputs YUV directly, then the

delay will be even less. From this table we can infer that there will be an initial delay for the live video processing

before transmission which will be around 30 seconds for a 20-second buffer. The initial delay is computed as

follows:

Total Initial Delay = Capture time + AVItoYUV conversion time + YUVtoDI generation time + Adaptation time

This initial delay will not adversely affect presentational applications, such as news services or sports broadcasting,

9

since some reasonable initial delay is acceptable in such systems. If a smaller initial delay is needed, say 10 or 5 or

even 1 second, it can be accommodated. However, for conversational applications involving synchronous

collaboration, such as video conferencing, this delay could potentially cause a problem and needs more research.

V. ENCRYPTION AND AUTHENTICATION OF ADAPTED VIDEO

Encryption is used in many video transmission applications to ensure that only authorized receivers can access the

media. Reasons for encryption include security, privacy, business reasons (only the subscribers who have paid should

be able to view), age restrictions, and others. Therefore, this paper further presents that, with the help of the adapted

gBSD, either macroblocks containing the motion vectors or slice data partitions of selective frames can be encrypted

after adaptation. Content authentication on the other hand is an ongoing and constant requirement for the

transmission of sensitive video content where integrity is a big issue. To embed copyright information, a robust

watermark is required whereas for authentication, fragile or semi-fragile watermarks are sufficient. Generally, fragile

watermarking systems or hard authentication rejects any modification made to a digital content. The idea is to

authenticate the digital data by a hash-value. The hash value can be protected with a key and the key can be verified

from a trust centre. Moreover, in most video adaptation delivery and consumption chains, watermark embedding and

detection need to be performed in real time. For still picture, detection of the robust watermark can take as long as a

few seconds but this delay is unacceptable for motion pictures especially when the frame rate is faster than given

thresholds say more than 10fps. Hence, we extend the functionality of our framework by adding an authentication

system which utilizes the adapted gBSD to select the marking space and to embed the authentication bits directly in

the compressed video bitstream after adaptation.

A. Encryption of the Adapted Video

Here, we perform two types of encryptions on the video: 1) encrypting selective macroblocks, and 2) encrypting

selective slice data partitions. These are explained next.

1) Encrypting selective macroblocks: In this method, macroblocks containing the motion vectors in each frame are

taken as logical units. The encryption engine considers the level of encryption based on the user’s preference. If the

encryption preference is high then all the frames in the adapted video are encrypted; else, either only the I-frames or

all frames from the selected framesets are encrypted. For encryption, first, the frame marker is scanned from the

gBSD. Thus, each macroblock’s starting position and corresponding length is retrieved from the transformed gBSD

for those frames which need to be encoded. To encrypt the macroblocks, an encryption key is chosen and an XOR

operation is performed. After the XOR operation, the bitstream is processed as usual for H.264 format compliance. It

is worth mentioning that each logical unit can be encrypted independently.

2) Encrypting selective slice data partition: From Section II we learnt that in H.264 slice sizes are flexible. In this

method, we consider a frame to be partitioned into multiple slices which will be the logical units for encryption. The

encryption engine considers the level of encryption based on user preferences like that of encrypting the

macroblocks. Initially for the encryption, the frame marker, start and length positions are parsed from the adapted

gBSD for all frames. Thus, each of the slice partitions is retrieved from the transformed gBSD for those frames,

which need to be encoded. To encrypt/scramble the selected slice data for perceptual degradation, again an

encryption key of arbitrary length is chosen and an XOR operation is performed on ‘luminance’ and ‘chrominance’

component coefficients. It is important to mention that each of the logical units can be encrypted independently with

a different key. The final output after macroblock/slice encryption is the adapted and encrypted video which is H.264

format compliant. Therefore, a standard H.264 player would be able to decode and play the video, but encrypted

frames will not be perceived clearly unless decrypted with the right key.

3) Experimental Results: The resulting encrypted video from the above two methods have frames which are

encrypted and would not be visually perceived clearly. Four frames of the results from the sample videos are shown

in Figure 4 for selective macroblock encryption. From Figure 4.h., we can observe that macroblock encryption is not

fairly useful for a video (or video frames) which have mostly static objects in the scene. For such case, we

10

recommend to use the slice data encryption as shown in Figure 5. For selective slice data encryption, the encrypted

slice contains visual artifacts hiding the actual visual data, which is an interesting technique to hide visual

information without removing or hampering other slice data partitions of the respective frame. As can be seen, for

both the methods, the resulting frames are visually distorted and not visibly useful without decryption.

FIGURE. 4. SAMPLE MACROBLOCK ENCRYPTED VIDEO FRAMES

FIGURE. 5. SAMPLE SLICE DATA ENCRYPTED VIDEO FRAME

B. Authentication of the Adapted Video

To present a watermarking based authentication scheme in the compressed domain, we have investigated the

possibility to utilize gBSD to select the marking space in the compressed domain where a digital signature

(watermark) can be embedded. The investigation result gives us a direction to perform hard authentication of the

adapted video to assure integrity. We make use of the gBSD to identify the segments into which the authentication

bits can be embedded.

1) Selecting the Marking Space: From the gBSD, a marking space can be selected from available alternatives, like

frame, slice, macroblock, and block. An application specific marking space can be selected in a predefined way and

a fixed watermark embedder can be designed. Otherwise, if the marking space is selected manually, the watermark

embedder should be capable of inserting watermark bits in the selected segment directly in the compressed bitstream.

a. Carphone - Original b. Carphone - Encrypted c. Airshow - Original d. Airshow - Encrypted

e. Corvette - Original f. Corvette - Encrypted g. Container - Original h. Container - Encrypted

Container - Original Container - Encrypted

11

For manual selection of the marking space, start and length of each segment need to be defined in the gBSD. At the

same time, selection of a marking space and applying customized modification must conform to the H.264 bitstream

specification to assure compliance for a standard player or decoder. In our implemented system, we have made use

of the slice data to compute authentication bits and finally embedded these bits in the slice header.

2) Watermark embedder: The watermark embedder module is designed to embed authentication bits on the fly

while adapting as shown in Figure 6. An arbitrary private key will be an input to the adaptation engine to perform the

necessary computation of the authentication bits.

FIGURE. 6. ADAPTATION AND WATERMARKING MODULE

In the adaptation engine, while adapting the video bitstream, we embed the authentication bits in the slice header

VLC byte align bits (minimum 1 bit and maximum 7 bits). It is important to mention that this marking space can be

further extended to other entities like frame and macroblock based on the gBSD details. Total number of bits in a

slice (SN) is the sum of slice header (SH(N)) bits and slice payload (SP(N)) bits, denoted as, SN = SH(N)+SP(N), where N =

total number of bits. From the gBSD, length of the slice header VLC byte align bits (vlcn), start and length of the

frame are parsed. A hash value (FHash) of the frame data including slide header (except the bits where the

authentication bits will be embedded) and slice payload is computed. The architecture applies a simple hash function

based on PJW Hash [24] which can be replaced by any available advanced hash function. Input to the hash function

is the frame data, length of frame data (in bytes) and a private key (PK). For implementation purpose, we have

considered a logo/sample image of an arbitrary length (LN) as our private key. Authentication bits embedded in the

slice header (SH) can be denoted as follows:

)()()(iKjHashjvlcnNH PFS ⊕=+−
NLivlcnjwhere ≤≤≤≤ 1,1,

After embedding the authentication bits, an optional second level of authentication is applied by scrambling the

last byte of the slice payload to restrict re-computation of the signature by an intruder. In H.264, blocks and

macroblocks are not byte-aligned, so an XOR operation is applied to the last byte of slice payload (Slbsp) with respect

to the private key like that of slice header. Even though to re-compute the authentication bits, along with the hash

value, the private key is necessary, the modified slice payload will add another layer of assessment to detect possible

attacks. Modification made to the slice payload can be shown as:

)(iKPSS lbsplbsp ⊕=
NLiwhere ≤≤1,

3) Watermark Detector: The watermark detector consists of a 4-step process. The first step, parsing adapted

gBSD, is extracting the marking space from the adapted gBSD to identify each watermarked segment. The second

step, restore frame data, comprises of XOR-ing the scrambled slice payload bits with the private key to re-instate the

slice data for computing original hash value. The third step, watermark extraction, extracts the authentication bits

from slice header. The final step corresponds to compare the computed hash value from slice data with the extracted

value from slice header.

To verify a received video content, the user needs, in addition to the video data, the private key and the adapted

gBSD. There are many approaches for the secure transmission of private key and gBSD and this topic is beyond the

scope of this research. In case of a video content for mass distribution without any priority given to authentication, it

is not necessary to modify the decoders for every client so that the adapted gBSD need not be transmitted to the

receiver. In the latter case, typical H.264 players will be able to play the content without any prior knowledge of the

modifications made to the content since the content structure conforms to the H.264 bitstream syntax structure.

4) Experimental Results: The benefit of embedding the authentication module inside the adaptation system is that

12

it reduces the overhead to parse the adapted gBSD for authentication. Figure 7, shows a comparative analysis of the

3-in-1 system. Here we can see the performance of the encryption module and the watermarking module on top of

the adaptation system for pre-recorded videos. The time required to embed authentication bits is a little higher than

the adaptation and the encryption time. The difference between these two depends on the hash function used. More

complicated or robust hash functions will require higher execution time to compute and embed the authentication

bits. Another factor that can affect the execution time is the marking space. To make the system more robust, one can

decide to embed the authentication bits in the frame, macroblock and block, which will eventually require longer

watermarking time.

FIGURE. 7. OVERALL SYSTEM PERFORMANCE

To perform encryption (and/or adaptation) operations in intermediary nodes, it is important to transmit the

corresponding (adapted) gBSD together with the (adapted) video bitstream. In this case, once a specific video

request is made, both the files (video and gBSD) need to be transmitted from the media resource server. To decrypt

the encrypted bitstream, the decryption module of the end node needs to have the adapted gBSD to identify the

encrypted slice partitions along with the decryption key.

VI. DISCUSSION

We have seen so far a framework for the utilization of MPEG-21 gBSD to adapt, encrypt and authenticate video

data in the compressed domain. A multi point adaptation on the encoded bitstream is achievable as long as the

bitstream description is preserved for the new adapted stream conforming to the gBS schema. The achieved benefit

of the work is that the end devices are free of any adaptation operations. Moreover, to protect the security and

integrity of the adapted media during transmission, we showed that knowledge of the bitstream along with content

structure in the form of metadata enables the encryption and the authentication processes to be customized and easily

deployable in the adaptation engine. However, the decryption and the authentication modules are optional for the

end-node devices and needs not to be implemented in all end-nodes unless it is obligatory. Depending on the

application scenario, if the decryption and/or verification of the video are insignificant (e.g. no

encryption/authentication have been made), then the transmission of the corresponding gBSD data can be omitted.

A
irsh

o
w

C
arp

h
o
n
e

C
o
n
tain

er

C
o
rv
ette

0

500

1000

1500

2000

2500

3000

5 10 15 20 25
Frame Rate

T
im

e
(M

il
li
se
co

n
d
)

A A+E A+E+Auth

0

500

1000

1500

2000

2500

3000

5 10 15 20 25
Frame Rate

T
im

e
(M

il
li
se
co

n
d
)

A A+E A+E+Auth

0

1000

2000

3000

4000

5 10 15 20 25
Frame Rate

T
im

e
(M

il
li
se
co

n
d
)

A A+E A+E+Auth

0

1000

2000

3000

4000

5 10 15 20 25
Frame Rate

T
im

e
(M

il
li
se
co

n
d
)

A A+E A+E+Auth

13

For decrypting and authenticating the received video, the end node should have a decryption and authentication

module embedded in the player respectively. Certainly, metadata delivery and processing for decryption and

authentication of video data leads to an additional overhead but from our experimental results we have found that the

size of the gBSD is around 2% of the encoded video file size for temporal adaptation.

Since the capabilities of small handheld devices are limited, to process received compressed domain video data in

these devices, video data can be transmitted in small chunks along with the corresponding gBSD. The gBSD parser

identifies the sections from the gBSD where the encryption and authentication operations are performed first. The

respective modules thus operate only on those limited sections of the corresponding video data (e.g. a frame or a

frameset depending on the processing power and memory of the device). It is noteworthy that, the purpose of the

aforementioned encryption framework is not to provide a full-proof encryption technique or algorithm. The proposed

framework applies the MPEG-21 DIA, where encryptable plaintext and/or marking space is identified from the

gBSD (which is parsed only once while adapting) as opposed to applying the encryption and authentication on the

whole bitstream, which eventually reduces the cost of computation and processing. Since decompression is less

complex than compression, the overhead added to decrypt the encoded macroblocks or slices would not exceed the

nominal threshold value for presentation, as they will reside as a closely coupled task. For authentication, the original

H.264 video is not required; rather a separate authenticator can verify the validity of the received video data. The

authenticator is independent of the decoder, so there will be no lag added while decoding the video. Instead of

computing hash value for every frame, a digital signature can be computed for the whole video content or for a

certain number of frames (e.g. frame rate at which the raw video is being adapted) and thus embedded in the selected

marking space.

 In an UMA environment, a Media Streaming Server (MSS) can be connected to several Proxy Servers (PS) and

clients. The MSS can serve clients which are directly connected to it. It sends the adapted video content, adapted

gBSD and the private key to the client(s) accordingly. In response to a request from a PS (e.g. PS 02) for a video

content, MSS will send the original H.264 video and the gBSD. PS 02 will then serve the subordinate clients with

proper adaptation and watermarking. Another PS (e.g. PS 01) can serve only classified clients (e.g. small handheld

devices) and thus request for a specific adapted video (e.g. SQCIF, 15fps) from the MSS. In this scenario, the MSS

will send the specified adapted video content along with the adapted gBSD (with an optional watermarking). PS 01

will then adapt and re-compute the authentication signature before serving a client. As we can see, none of the

servers needs to be aware of the codec. It can adapt and watermark the videos on the fly just looking at the gBSD.

VII. CONCLUSION

Seamless adaptation and transcoding techniques to adapt digital content have achieved significant attention due to

the need to serve consumers with the desired content in a feasible way. Two desirable characteristics of an adaptation

system for video streaming can be noted as adapting the media and protecting the security of the media. Most recent

commercial video monitoring/surveillance tools and applications intend to apply H.264 format for video due to its

flexibility and quality. Video data being captured by wireless/dispersed cameras and transmitted to a distant receiver

thus requires embedding a signature in real time to scrutinize the integrity of the received content in a contained

environment. In this work, we showed that knowledge of the bitstream along with content structure in the form of

metadata enables the encryption and authentication processes to be customized and integrated in the adaptation

system. Beyond the developments presented above, interleaved video and audio bitstream adaptation in real time is

an emergent field of research. For the time being, our notion for audio is to transmit the audio bitstream in a separate

channel where starting of each frameset in video bitstream would be the synchronization point while playing.

Scalable Video Coding (SVC), part 13 of the Multimedia Framework for a pervasive media application environment

is another interesting area of study. Moreover, in pervasive networking environment a reasonable solution is required

that will disallow possibly untrusted intermediary adaptation engines in the delivery path to adapt content in the

encrypted domain. Further research to embed robust watermark in compressed domain for copyright protection

purposes is an interesting research field for the current research team. Finally, to avoid the obvious fixed delay while

14

capturing and processing the DIs, a hardware level implementation capable of generating the compressed bitstream

and gBSD will definitely faster the process.

REFERENCES

[1] R. Iqbal, S. Shirmohammadi, and C. Joslin, “MPEG-21 Based Temporal Adaptation of Live H.264 Video,” in Proc. of IEEE Intl.

Symposium on Multimedia, Dec. 11-13, 2006, pp. 457-464.

[2] R. Iqbal, S. Shirmohammadi, and A. El Saddik, “A Framework for MPEG-21 DIA Based Adaptation and Perceptual Encryption of H.264

Video,” in Proc. of SPIE/ACM Multimedia Computing and Networking Conference, Vol. 6504, Jan. 28 - Feb. 1, 2007, pp. 650403-1 –

650403-12.

[3] ISO/IEC 21000-7:2004, Information Technology – Multimedia Framework – Part 7: Digital Item Adaptation.

[4] A. Vetro and C. Timmerer, “Digital item adaptation: overview of standardization and research activities,” IEEE Trans. on Multimedia,

Vol. 7, Issue 3, Jun. 2005, pp. 418-426.

[5] L. Rong and I. Burnett, “Dynamic multimedia adaptation and updating of media streams with MPEG-21,” in Proc. of First IEEE

Consumer Communications and Networking Conference, 2004, pp. 436-441.

[6] S. Wenger, “H.264/AVC over IP,” IEEE Trans. on Circuits and Systems for Video Tech., Vol.13, Issue 7, 2003, pp. 645-656.

[7] C. Gomila and P. Yin, “New features and applications of the H.264 video coding standard,” in Proc. of Intl. Conf. on Info. Tech.:

Research and Education, 2003, pp. 6 – 10.

[8] J. Xin, C.-W. Lin, and M.-T. Sun, “Digital video transcoding,” Proc. IEEE, vol. 93, no. 1, Jan. 2005, pp. 84–97.

[9] K. Taehyun and M.H. Ammar, “Optimal quality adaptation for scalable encoded video,” IEEE Journal on Selected Areas in

Communications, Vol. 23, 2005, pp. 344-356.

[10] M.A. Bonuccellit, F. Lonetti, and F. Martelli, “Temporal transcoding for mobile video communication,” in Proc. of Second Annual Intl.

Conf. on Mobile and Ubiquitous Systems: Networking and Services, 2005, pp.502-506.

[11] F. D. Vito, T. Ozcelebi, R. Civanlar, A. M. Tekalp, and J. C. D. Martin, “Rate Control For GOP-Level Rate Adaptation in H.264 Video

Coding,” in Proc. of Intl. Workshop on Very Low Bit-rate Video Coding, 2005.

[12] I. Shin, Y. Lee, and H. Park, “Motion estimation for frame-rate reduction in H.264 transcoding,” in Proc. of Second IEEE Workshop on

Software Technologies for Future Embedded and Ubiquitous Systems, 2004, pp.63-67.

[13] S. Devillers, C. Timmerer, J. Heuer, and H. Hellwagner, “Bitstream syntax description-based adaptation in streaming and constrained

environments,” IEEE Trans. on Multimedia, Vol. 7, Issue 3, Jun. 2005, pp. 463-470.

[14] H. Cheng and Li Xiaobo, “Partial encryption of compressed images and videos,” IEEE Trans. on Signal Processing, Vol.48, Issue 8, 2000,

pp. 2439-2451.

[15] T. Lookabaugh, “Selective encryption, information theory and compression,” In Proc. of Conf. Record of the 38th Asilomar Conf. on

Signals, Systems and Computers, Vol.1, 2004, pp. 373-376.

[16] M. Noorkami and R. M. Mersereau, “Towards Robust Compressed-Domain Video Watermarking for H.264,” SPIE Security,

Steganography, and Watermarking of Multimedia Contents, Vol. 6072, Jan. 2006, pp. 489-497.

[17] G. Wu, Y. Wang, and W. Hsu “Robust Watermark Embedding Detection Algorithm for H.264 Video,” Journal of Electronic Imaging,

Vol. 14, Jan.-Mar. 2005.

[18] G. Qiu, P. Marziliano, A.T.S. Ho, D. He, and Q. Sun, “A Hybrid Watermarking Scheme for H.264/AVC Video”, in Proc. Of 17th Intl.

Conf. on Pattern Recognition, Vol. 4, 2004, pp. 865-869.

[19] J. Zhang and A.T.S. Ho, “Efficient Video Authentication for H.264/AVC,” in Proc. of 1st Intl. Conf. on Innovative Computing,

Information and Control, Vol. 3, Aug. 2006, pp. 46-49.

[20] D. Pröfrock, H. Richter, M. Schlauweg, and E. Müller, “H.264/AVC Video Authentication Using Skipped Macroblocks for an Erasable

Watermark,” in Proc. of SPIE Visual Communications and Image Processing, Vol. 5960, 2005, pp. 1480-1489.

[21] S-F Chang and A. Vetro, “Video Adaptation: Concepts, Technologies, and Open Issues,” Proc. IEEE, Vol. 93, No. 1, Jan. 2005, pp. 148 –

158.

[22] http://ftp3.itu.ch/av-arch/jvt-site/reference_software/

[23] http://www.w3.org/TR/xslt

[24] A. V. Aho, R. Sethi, and J. D. Ullman, Compilers: Principles, Techniques, and Tools, Addison-Wesley, pp. 434-438, 1986.

