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Abstract  

Recommender systems, which have emerged in response to the problem of information overload, 

provide users with recommendations of content suited to their needs. To provide proper 

recommendations to users, personalized recommender systems require accurate user models of 

characteristics, preferences and needs. In this study, we propose a collaborative approach to user 

modeling for enhancing personalized recommendations to users. Our approach first discovers useful 

and meaningful user patterns, and then enriches the personal model with collaboration from other 

similar users. In order to evaluate the performance of our approach, we compare experimental results 

with those of a probabilistic learning model, a user model based on collaborative filtering approaches, 

and a vector space model. We present experimental results that show how our model performs better 

than existing alternatives. 

Keywords. Collaborative user modeling, Recommender system, Personalization, Content-based user 

model 



 2 

1. Introduction 

The prevalence of Web 2.0 technologies and services enable end-users to be producers as well as 

consumers of content. Even on a daily basis, an enormous amount of textual content, such as online 

news, research papers, blog articles, and wikis are generated on the Web. It is getting more difficult to 

make automatic recommendations to a user related to his/her preferences, not only because of the 

huge amount of information but also because of the difficulty of automatically grasping his/her 

interests [6]. Recommender systems, which have emerged in response to the above challenges, 

provide users with recommendations of content suited to their needs. There are two widely used 

approaches among recommender systems, content-based filtering and collaborative filtering. The 

traditional task in collaborative filtering is to predict the utility of a certain item for the target user 

from the opinions of other similar users, and thereby make appropriate recommendations [17]. On the 

other hand, content-based filtering provides recommendations by comparing representations of 

content contained in an item to those of a user’s interest content, ignoring opinions of other similar 

users [15]. Collaborative filtering has an advantage over content-based filtering in situations where it 

is hard to analyze the underlying content, e.g., music, videos, and photos. Because collaborative 

filtering process is only based on historical information about whether or not a given target user has 

previously preferred an item, analysis of the actual content, itself, is not necessarily required.  

Nevertheless, collaborative filtering suffers from a fundamental problem, namely the cold start 

problem, which can be divided into cold start items and cold start users [21]. Several researchers have 

offered proposals dealing with the challenge of addressing this problem [9][15][18][21]. In a 

collaborative filtering-based recommender system, an item cannot be recommended until a large 

number of users have previously rated it. This is known as a cold start item. This problem applies to 

new items generated every few minutes and can be partially alleviated by content-based technology. 

In the case of domains such as textual documents, content-based filtering has proven to be effective in 

locating textual content relevant to a specific content information need [5][9]. However, content-

based filtering also encounters limitations for a cold start user, similar to collaborative filtering. A 

cold start user describes a new user that joins a recommender system and has presented few opinions 
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(i.e., the user has insufficient preference history). With these situations, the system is generally unable 

to make high quality recommendations. 

We address these issues by introducing a collaborative approach to user modeling for enhancing 

content filtering. Our goal is to build a robust user model that can be applied to personalized 

recommender systems. By capturing a user’s content of interest, we can discover the preference 

patterns and terms existing in the user’s content of interest. In addition to partially overcome the cold 

start user problem, we propose an enrichment method of the personal model in collaboration with 

other similar users.  

This paper presents three specific contributions toward user modeling in recommender systems. 

First, we propose a new method of building a user model, allowing understanding and filtering of the 

user’s interests. We then present a method of a collaborative enrichment of user interests in dealing 

with the cold start problem. Second, we propose how the individual model can be applied to 

personalized recommendations relevant to the user’s needs. We incorporate collaborative 

characteristics into a content-based approach. Third, we provide detailed experimental evaluations 

with real datasets and investigate how collaborative user models work in terms of improving the 

recommendation performance. 

The subsequent sections are organized as follows: Section 2 summarizes previous studies related to 

user modeling and personalized recommendations. In Section 3, we describe the notations and method 

to build the initial user model. We then describe a collaborative approach for modeling user interests 

and recommending content in Section 4. Next, Section 5 describes the implemented system and 

interface. In Section 6, we present the effectiveness of our approach in terms of its performance. 

Finally, conclusions are presented and future work is discussed in Section 7. 

2. Related work 

In personalized recommender systems, two main approaches have been developed: a content-based 

filtering approach and a collaborative filtering approach. Following the proposal of GroupLens [17], 

the first system to generate automated recommendations, collaborative filtering approaches have seen 

the widest use in a large number of information filtering problems relating to such things as movies, 
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books, music, online news, TV programs, and research papers. Despite success and popularity, 

collaborative filtering encounters several limitations, including the sparsity of the data, scalability, the 

cold start problem, and untrustworthy users. A number of researchers have addressed these problems 

using content-based filtering [3]. 

Content-based filtering methods, which are another well-known technique in recommender 

systems, have been developed using learning procedures.  These procedures require training data to 

identify personal preferences (user model) from information objects and their content. Webmate 

tracked documents of interest to the user and exploited the vector space model using the TF-IDF 

(Term Frequency–Inverse Document Frequency) method [5]. Schwab et al. [22] explored the use of a 

classification approach to recommend articles relevant to the user profile, such as NewsDude. In 

NewsDude, two types of user interests are used: short-term and long-term interests. To avoid 

recommendations of very similar documents, a short-term profile is used. For the long-term interests 

of a user, the probabilities of a document are calculated using Naïve Bayes approach to classify a 

document as interesting or not. Instead of learning from users’ explicit information, PVA [4] learned a 

user profile implicitly without user intervention. The user profile is represented as a keyword vector in 

the form of a hierarchical category structure. In Newsjunkie [10], a novelty-analysis algorithm is 

employed to present novel information for users by identifying the novelty of articles in the contexts 

of articles they previously reviewed. Lihua et al. [12] proposed a method of modeling multiple user 

interests by using a self-organizing map neural network with a changeable network structure. SiteIF 

[13] proposed using word sense-based document representation to build a model of the user’s 

interests. A filtering procedure was employed to dynamically predict new documents based on a 

semantic network.  

Collaborative and content-based filtering methods have unique advantages and disadvantages. 

Therefore, some studies combine these techniques in developing hybrid recommender systems [3]. 

Berkovsky et al. [1] presented a method of user modeling data integration for the purposes of a 

specific recommendation task, referred to as the mediation of a user model. By importing and 

integrating data collected from other recommender systems, four types of user model mediation are 

presented: cross-user, cross-item, cross-context, and cross-representation. In [2], the same authors 
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presented mediated user models that are transformed from collaborative filtering to content-based 

recommender systems. In [7], a content-collaborative hybrid recommender system is proposed that 

exploits WordNet-based user profiles to capture the semantics of user interests. Similar to our 

approach, the authors generated the neighborhood of a user through content-based methods. Melville 

et al. [15] followed a two-stage approach. First they applied a naive Bayesian classifier as content-

based predictor to complete the rating matrix, and then they re-estimated ratings from this full rating 

matrix by collaborative filtering. CinemaScreen [18] reversed the stages. It executed content-based 

filtering on a result set generated through collaborative filtering.  

Although the above-mentioned studies combine collaborative and content-based filtering 

approaches to exploit the benefits of each and lessen the disadvantages, our approach takes a different 

stance. Differing from earlier work, we automatically identify meaningful or useful patterns in 

building a user model. In addition, rather than utilizing explicit user feedback such as numeric ratings 

assigned to content, our aim is to build a robust user model implicitly inferred by the system from 

observing user behavior. Through the identification of useful patterns of a user in collaboration with 

other similar users, we discover content relevant to the user's needs. 

3. Building a personal user model 

The capability to learn users’ preferences is at the heart of a personalized recommender system. In 

order to provide proper recommendations to users, personalized recommender systems require user 

models of characteristics, preferences, and needs.  This information is typically referred to in the 

literature as a User Model (UM) [2]. Additionally, since every user can have different interests, 

feature selection for representing users’ interests should be personalized and performed individually 

for each user [14]. In this section, we describe our approach to building a personal user model that is 

driven by the user’s content of interest. 

Before going into further detail, the notation and definitions required for understanding our 

approach are introduced. Let C = {c1, c2, …, cn} be the set of all content, T = {t1, t2, … , tm} be the set 

of all index terms, and U = {u1, u2, …, ul} be the set of distinct users. The content cj is a set of terms, 

each of which may appear in multiple content with different weights that quantify the importance of 
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the term for describing the content. In our study, a weight wi,j associated with a pair (ti, cj) (i.e.,  a term 

ti of a content cj) is computed by a fairly common type of TF-IDF weighting scheme [19]. To build a 

personal user model, potentially representative of user interests, we initially need some information 

given by the user, called user feedback. The most common ways to obtain the feedback is to use 

information given explicitly or to get information observed implicitly from the user’s interaction [26]. 

Explicit feedback requires a user to evaluate content and indicate how relevant or interesting specific 

content is to him/her using like/dislike (a binary scale) or numerical ratings. Even though explicit 

feedback helps us to capture user preferences accurately, there is a serious drawback in that users do 

not tend to provide enough feedback. Users are generally not motivated to provide their feedback if 

they do not receive immediate benefits, even when they would profit in the long-term [26]. Therefore, 

in our study, we take implicit feedback into consideration in the sense that the system automatically 

infers the user’s preferences from the user’s behaviors [1][6][26]. In general, the preference indicator 

of implicit feedback can be represented as a form of a co-occurrence pair (uh, cj), where uhU is a 

user and cjC is specific content. The co-occurrence pair implies that user uh viewed, clicked, 

collected, or bookmarked content cj. While implicit feedback on specific content by a user does not 

necessarily mean that he/she likes the content, we assume that the co-occurrence pairs of the user are 

his/her interest content, implicitly. 

3.1 Modeling user interests by text mining 

Our approach to modeling user interests mainly consists of three steps: extracting terms, mining 

frequent patterns, and pruning patterns. In this section, we present the steps to initially build a 

personal user model in detail. 

The first step in user modeling is the extraction of the terms from interest content that have been 

preprocessed by removing stop words and stemming words [16]. After extracting terms, each interest 

content cj is represented as a vector of attribute-value pairs as follows: 

)},(),...,,(),,{( ,,,2,2,1,1 jmjmjjjjj wtwtwtc   (1) 
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where ti,j is the extracted term in cj and wi,j is the weight of ti in cj. wi,j is computed by the static TF-

IDF term-weighting scheme [19] and defined as follows:  
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w log
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,   (2) 

where fi,j is the frequency of occurrence of term ti in content cj, n is the total number of content pieces 

in the collections, and ni is the number of content pieces in which term ti occurs. The weight indicates 

the importance of a term in representing the content.  

The second step is to mine frequent term patterns from the interest content of each user. Since 

every user has different interests, content used for the mining process must be selected individually 

for each user. Frequent patterns are a set of terms that appear frequently together in a set of a user’s 

interest content. For example, if a set of terms {recommendation, collaborative, personalization, 

filtering} appear frequently together in a user’s set of interest content, the set of those terms is a 

frequent pattern for the user. In the data mining research literature, frequent patterns are typically 

defined as patterns that occur at least as frequently as a predetermined minimum support (min_sup) 

[11]. In our study, we apply the mining process based on the following assumption: each transaction 

corresponds to an interest content of a user, items in a transaction are terms extracted from the 

content, and a transaction database corresponds to a user’s set of interest content. Therefore, if the 

pattern support of pattern pk (Definition 1) that is composed of at least l (l  2) different terms, is 

above min_sup, i.e., PSu(pk) > min_sup, then pattern pk is referred to as a frequent term pattern. We 

denote a set of frequent term patterns for user u as Fu.  

 

Definition 1 (Pattern Support, PS) Let u be user u’s set of interest content and pattern pk = {t1, 

t2, ... , tn} be a set of terms such that pk  T and n  2. A content piece cj is said to contain pattern pk if 

and only if pk  cj. Pattern support for pattern pk in u, written as PSu(pk), is the ratio of content in u 

that contains pattern pk. That is, PSu(pk)=fu(pk) / | u |, where fu(pk) indicates the occurrence frequency 

of pattern pk in u. 
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Once the frequent patterns are mined, in the third step we remove the patterns containing 

unnecessary terms from the set of frequent term patterns. To this end, we define the importance of 

each term in representing a certain pattern, called the pattern weight. Formally, for a given pattern pk 

 Fu, the pattern weight of pk for user u, denoted as PWu(pk), is computed by: 



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k

ku p
pPW ,||

1
)(   (3) 

where μi,u is the mean weight for term ti in u and is computed as follows: 
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where u(i) is the set of interest content for user u containing term ti and wi,j is the weight of term ti in 

content cj. For any pattern pk in Fu, we determine the patterns for which the pattern weight is greater 

than the minimum pattern weight, min_pw, and model user preferences based on the identified 

patterns, collectively called a Personalized Term Pattern. In addition, terms that appear within 

personalized term patterns are called Personalized Terms. 

 
Definition 2 (Personalized Term Pattern, PTP) A personalized term pattern is defined as a frequent 

term pattern for which the pattern weight is greater than the minimum pattern weight min_pw, i.e., pk 

 Fu and PWu(pk) > min_pw. A set of personalized term patterns for user u is denoted as PTPu such 

that PTPu = {(pk , PSu(pk))| PWu(pk) > min_pw  pk  Fu }. 

 

Definition 3 (Personalized Term, PT) A personalized term is a term that occurs within personalized 

term patterns. The set of personalized terms for user u is denoted as PTu. In addition, the vector for 

PTu is represented by 


uPT = (μ1,u, μ2,u, …, μt,u), where t is the total number of personalized terms and 

μi,u is the mean weight for term ti, which is computed by Equation (4). 

 

The formal description of the model for user u, Mu, is as follows: Mu= PTPu, PTu, where PTPu 

models the interest patterns (Definition 2) and PTu models the interest terms (Definition 3). And the 

model is stored in a prefix tree structure, which is inspired by a frequent-pattern tree (FP-tree) [11], to 

save memory space, explore relationships of terms, and retrieve PTPs having some PTs efficiently. 
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For example, if five personalized term patterns are found, as shown in Table 1, after mining the 

content of interest for user u, the tree structure of the model for user u is then constructed as follows. 

All PTu are stored in the header table and sorted in order of descending frequency of terms since there 

are better chances that more prefix terms can be shared [11].  

(Table 1 about here) 

 

First, we create the root of the tree, labeled with “null”. For the first term pattern, {t1, t2, t3} is 

inserted into the tree as a path from the root node, where t2 is linked as the child of the root, t1 is 

linked to t2, and t3 is linked to t1. PS and length of the pattern (PS(p1)=0.56, length=3) are then 

attached to the last node t3. The nodes linked together in the path imply that the nodes (terms) 

contained in the pattern co-occur frequently in the user's interest content. For the second pattern, since 

its term pattern, {t1, t2, t3, t4}, shares a common prefix {t2, t1, t3} with the existing path for the first 

term pattern, a new node t4 is created and linked as a child of node t3. Thereafter, PS(p2) and 

length(p2) are attached to the last node t4. The third, fourth, and fifth patterns are inserted in a manner 

similar to the first and second patterns. To facilitate tree traversal, a header table is built, in which 

each term points to its occurrence in the tree via a node-link. Nodes with the same term-name are 

linked in sequence via such node-links. Finally, the model for user u is constructed as shown in Fig. 1. 

Note that the built tree is a compact data structure for representing the whole interest patterns and 

terms of user u by sharing personalized terms in the personalized patterns. 

(Fig. 1 about here) 

 

4. Collaborative user modeling for content filtering 

In this section we describe how to enrich the model for a specific user. The model Mu described in 

Section 3 is referred to the initial user model for user u. This model can be applied immediately to 

generate content recommendations. However, diverse patterns for user u cannot be discovered via the 

mining process in the case where the user has a small number of interest content. This is known as a 
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cold start user. With this situation, initial personalized term patterns may not be sufficient to represent 

user preferences, and thus our approach is generally unable to make high quality recommendations. In 

addition, when we only use the initial model for recommendations, it is hard to recommend to the user 

novel content of value aside from the usual set. For the above reasons, we propose an enrichment 

method of the user model via personalized term patterns of like-minded users. 

4.1 Content-based neighborhood formation 

The main goal of neighborhood formation is to identify a set of user neighbors, k nearest neighbors, 

which is defined as a group of users exhibiting interest terms similar to those of the target user. A 

typical collaborative filtering recommender system encounters serious limitations for finding a set of 

users, namely the sparsity problem [7][15]. The sparsity problem occurs when available data is 

insufficient to identify similar users (neighbors) due to the immense amount of content. In practice, 

even when users are very active, the result of rated content is only a small proportion of the total 

number of content. Accordingly, it is often the case that a pair of users has nothing in common, and 

hence the similarity cannot be computed. Even when the computation of similarity is possible, it may 

not be very reliable, because insufficient information is processed. To this end, in our study, we select 

the best neighbors by using the personalized terms, PT, of each user. In order to find k nearest 

neighbors, the cosine similarity, which quantifies the similarity of a pair of vectors according to their 

angle, is employed to measure the similarity values between a target user and every other user. As 

noted in Definition 3, the personalized terms of a pair of users, u and v, are represented as t-

dimensional vectors, 


uPT and 


vPT respectively. Therefore, the similarity between a pair of users, u and 

v is measured by Equation (5). 
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(5) 

 
The similarity score between a pair of users is in the range [0, 1] and the higher a user’s score, the 

more similar he/she is to the target user. After computing the all-to-all similarity between users, we 
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define the set of nearest neighbors of each user u as an ordered list of k users (u) = {v1, v2,…, vk} 

such that u(u), and sim(u,v1) is the maximum, sim(u,v2) is the next maximum etc. [20]. 

4.2 Collaborative enrichment of user interests 

Once we have identified the set of the nearest neighbors for a certain user u, his/her initial model Mu 

=PTPu, PTu is enriched from the neighbors. The basic idea of enriching the model of the user u starts 

from assuming that the user is likely to prefer similar patterns that have been discovered from the 

neighbors with similar tastes. The patterns discovered from more similar users contribute more to 

enriching the model of the target user. For example, if the pattern, such as {personalization, 

recommender}, frequently appears in interest content of a user, he/she might also be interested in the 

pattern, such as {personalization, recommender, collaborative, filtering}, that frequently appears in 

interest content of users similar to him/her. This enrichment process is particularly effective to some 

users who do not contain interest terms and patterns in their user model, such as the cold start users. 

We elaborate on the general idea of the enrichment process in the following. Let (u) = 

{v1,v2,…,vk} be a sorted neighbor list of target user u, PTPu be a set of personalized term patterns for 

user u, and PTPv, v  (u), be a set of personalized term patterns for neighbor user v of user u. 

Firstly, we choose neighbor user v in descending order of similarity between target user u and 

neighbors.  

(Fig. 2 about here) 

 

For each pattern pi in PTPu, specific patterns of pi in PTPv are identified. Given two patterns pi and 

pj, pi is said to be a general pattern of pj if and only if pi is a subset of pj, i.e., pi  pj. On the contrary, 

pj is said to be a specific pattern of pi. For example, let p1= {t4, t5} be the personalized terms pattern 

for user u such that p1 PTPu, and PTPv ={p2, p3, p4, p5} be the set of PTPs for user v such that p2= 

{t2, t4, t5}, p3= {t4, t5, t8}, p4= {t2, t4, t5, t7}, and p5= {t7, t8} as shown in Fig. 2. 

Since pattern p2, p3, and p4 contain the entire terms of pattern p1, they are said to be a specific 

pattern. Several specific patterns that occur in the PTPs of neighbor v, PTPv, may be found. For 
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efficient enrichment, we only consider specific patterns which have higher pattern support than that of 

the general pattern. Assume that the pattern support for p1, p2, p3, and p4 is 0.41, 0.5, 0.47, and 0.35, 

respectively (i.e., PSu(p1)=0.41, PSv(p2)=0.5, PSv(p3)=0.47, and PSv(p4)=0.35). In this case, only 

pattern p2 and p3 is used for enriching the model of user u if they are not PTPs for user u, as can be 

seen in Fig. 3. Patterns such as p2 and p3 are called Collaborative Term Patterns (CTPs) for target user 

u. An enriched model for user u by neighbor user v is built, as shown in Fig. 4. 

(Fig. 3 about here) 

(Fig. 4 about here) 

 

Finally, a set of collaborative patterns is identified from k nearest neighbors, with respect to target 

user u. Note that the collaborative term pattern for the target user is not allowed to be redundant. That 

is, if the same patterns that were previously enriched by neighbor v are also discovered from another 

neighbor h such that sim(u,v)  sim(u,h), for vh, those patterns are pruned.  

The enriched model for user u is defined as a triple M+
u = PTPu, CTPu, PT+

u where PTPu is the set 

of personalized term patterns for user u, CTPu is the set of collaborative term patterns for user u, and 

PT+
u is the set of interest terms that occur within either the personalized patterns or the collaborative 

patterns, respectively. In the enriched model M+
u, PTPu models the interest patterns of user u whereas 

CTPu models the enriched interest patterns by the neighbors of user u. 

 
Definition 4 (Collaborative Term Pattern, CTP) Let pi be a personalized term pattern for target 

user u, piPTPu, and pj be a personalized term pattern for neighbor v such that pjPTPv, and v  (u). 

We define the set of collaborative term patterns for user u, denoted as CTPu, as the set of neighbor 

patterns pj such that pi  pj, pjPTPu, and PSu(pi)  PSv(pj). 

4.3 Personalized content recommendation 

After the model is enriched, we are ready to provide recommendations for new content that a user has 

not previously read. Based on the enriched model for each user, we recommend to the user the top-N 

ranked content that he/she might be interested in reading. To this end, the most important task in 
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personalized recommendation is to generate a prediction, that is, speculation about how much a 

certain user would prefer unseen content. In our study, we consider matched patterns, that is, how 

many interest patterns in a user model are contained in the new content. Formally, the numeric score 

of the target user u for the content cn, denoted as Pu,n, is obtained as follows: 
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where Nu is the total number of patterns in both PTPu and CTPu, and kp
nB  is binary variable for 

determining whether or not pattern pk occurs in content cn. That is, kp
nB  is 1 if pattern pk appears in 

content cn and 0 otherwise, and kp
u  represents the weighted pattern support of pk for user u, which is 

given by: 
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The main concept of prediction dictates that interest patterns in the model of the target user are a 

good estimate of the preference for the selected content. The more the content contains the patterns in 

the model, the higher rank the content obtains. This scheme can also make recommendations for new 

content added regularly to the system, known as the new item problem in collaborative filtering [24], 

as well as support serendipitous recommendations [25]. Recommender systems relying exclusively on 

a user's interest content can only recommend content highly related to that which the user has 

previously selected. It is hard to recommend novel content that are different from anything the user 

has previously read before. This is known as the problem with overspecialization [18][24]. In our 

approach, by utilizing the enriched patterns from neighbors with similar tastes, we can make content 

to be a higher rank in the recommended set that the content contains the collaborative (enriched) 

patterns valuable to the target user, even though the patterns are not directly discovered from the 

user’s interest content. 

Once the content predictions about the target user, which the user has not previously read, are 

computed, the content are sorted in order of descending predicted value Pu,n. Finally, the set of N 
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ordered content elements with the highest values are identified for user u. This is the set of content 

recommended to user u (top-N recommendation). 

 
Definition 5 (Top-N recommendation) Let C be the set of all content, Xu be the content list that user 

u has previously collected or added to his preference list (interest content), and Yu be the content list 

not previously read by user u, Yu = C – Xu and Xu  Yu = . Given a pair of content elements ci and cj, 

ci Yu and cj Yu, content ci will be of more interest to user u than content cj if and only if the 

prediction score Pu,i of the target user u for the content ci is higher than that of content cj, Pu,i > Pu,j. 

Top-N recommendations for user u identifies an ordered set of N content, TopNu, that will be of 

interest to user u such that |TopNu|  N, TopNu  Xu = , and TopNu  Yu. 

5. System implementation 

Based on the requirements defined in Section 3 and 4, we developed a prototype system to support 

personalized content recommendations, named PRCUM (Personalized Recommendations via 

Collaborative User Model). The PRCUM system is divided into four main types of tasks: (a) 

Observing relevance feedback of a given user, (b) Modeling user interests from observed content, (c) 

Enriching user interests from nearest neighbors, and (d) Generating content recommendations for a 

given user. An overall system process for personalized content recommendations is shown in Fig. 5.  

(Fig. 5 about here) 

 

PRCUM first requires the user to sign in with his/her username and password, and then it allows 

the user to add content to a preference list and monitors the user’s browsing inside the system. 

Because PRCUM cannot make recommendations to the user before building the individual model, it 

delays recommendations until the model is of a sufficient size and has been successfully built. The 

user can adjust the desired model parameters, such as the minimum support (min_sup), the minimum 

pattern weight (min_pw) and the number of nearest neighbors (k). Once the model has been built, 

PRCUM allows the user to enter his/her personalized pages and proposes to him/her a list of 
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recommended content. The GUI of PRCUM is implemented using C# and the server side is 

implemented using MySQL 5.0 and PHP 5.2 in an Apache 2.2 environment.  

(Fig. 6 about here) 

 

The GUI mainly consists of four frames: a menu frame, a favorite frame, a recommendation frame 

and a main frame. By interacting with the menu frame, users can choose the functions of PRCUM 

rendered by the main frame. As one of the principal functions in PRCUM, the recommendation frame 

provides a list of recommended content, a list of nearest neighbors, and recently added interest 

content. And the favorite frame is used for jumping to content in favorites previously registered in 

PRCUM. Users can maximize (display) or minimize (hide) the recommendation frame and the 

favorite frame according to their preference. Fig. 6 shows a snapshot of the user interface for the 

PRCUM system. 

6. Experimental evaluation 

In this section, we empirically evaluate the proposed approach and compare its performance against 

that of the benchmark algorithms. All experiments were performed on a Dual Xeon 3.0 GHz, 2.5GB 

RAM computer running the MS-Window 2003 server. 

6.1 Datasets 

We use two test datasets for our comparative experiments. The first dataset is taken from NSF 

(National Science Foundation) research award abstracts [16]. The original dataset is too large to be 

used in practice and thus we selected award abstracts with topics highly related to computer science. 

The selected dataset contains 974 unique abstracts (i.e., content) and 9,823 unique terms were 

obtained from the abstracts. In addition, we collected 9,845 preference histories (i.e., interest content 

of users) from 78 users. We refer to this dataset as NSF. 

The second dataset comes from MovieLens, which is a web-based research recommendation system 

(www.movielens.org). The original dataset does not contain any information about movie content, 

and thus we extracted the textual descriptions (i.e., genres, keywords, summary) for each movie from 
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the IMDb database (www.imdb.com). Though the dataset contains numerical ratings, we ignored 

these and binarized them as follows: if a certain user’s movie rating is larger than his/her average 

rating we set the rating to 1 (i.e., the interest movie of the user), or 0 otherwise. Thereafter, we 

removed users who had less than 20 ratings. The binarized dataset consists of 50,318 ratings on 1,682 

movies from 658 users. We refer to this dataset as MLens. Table 1 briefly describes our datasets. 

(Table 2 about here) 

6.2 Evaluation design and metrics 

To evaluate the performance of the recommendations, we randomly divided the dataset into a training 

set and a test set. The users’ interest items were split into a test set with 10 items per user (i.e., 780 

items for NSF and 6,580 items for MLens) and a training set with the remaining content (i.e., 9,065 

items for NSF and 43,738 items for MLens) that was to used to learn and build a model of each user.  

In order to evaluate the performance of our approach, we implemented the following: i) a user-

based collaborative filtering method UCF [20], ii) an item-based collaborative filtering method, which 

employs cosine-based similarity ICF [8], iii) a probabilistic learning algorithm termed NB that applies 

the multinomial event model of a naïve Bayes assumption [14], and iv) a TF-IDF vector-based 

algorithm VT [5]. For the content recommendation process, in the case of NB, content were ranked 

using the calculated probability values, whereas they were ranked using the calculated cosine 

similarity for VT. For UCF and ICF, the proximity between users or items was measured by cosine-

based similarity and items were ranked using the weighted sum using the similarity as the weight. Our 

top-N recommendation strategy (M+) was then compared with the benchmark algorithms. We adopted 

two evaluation measures that are defined as follows: 

Hit Rate (HR) In the context of top-N recommendations, the hit-rate, a measure of how often a list of 

recommendations contains items that the user is actually interested in, was used for the evaluation 

metric [8]. The hit-rate for user u is defined as: 

  

  
)(

u

uu

Test

TopNTest
uHR


  (8) 
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where Testu is the item list of user u in the test data and TopNu is the top-N recommended item list for 

user u. Finally, the overall HR of top-N recommendation for all users is computed by averaging the 

personal HR(u) in the test data. 

Reciprocal Hit Rank (RHR) One limitation of the hit-rate measure is that it treats all hits equally 

regardless of the ranking of recommended content. In other words, a content item that is 

recommended with top ranking is treated equally with an item that is recommended with Nth ranking. 

To address this limitation, we adopted the reciprocal hit-rank metric described in [8]. The reciprocal 

hit-rank for user u is defined as: 





)( )(

1
)(

uun TopNTesti nirank
uRHR  

(9) 

where rank(in) refers to the recommended ranking of item in within the hit set of user u. That is, hit 

content that appear earlier in the top-N list are given more weight than later ones. Finally, the overall 

RHR for all users is computed by averaging the personal RHR(u) in the test data. The higher the RHR, 

the more accurately the algorithm recommends items. 

6.3 Experimental results 

In this section, we present detailed experimental results. The performance evaluation is divided into 

three dimensions. The effect of the neighbor size on the performance of model enrichment is first 

evaluated, and then the effectiveness of model enrichment is evaluated in comparison with the initial 

user model. Finally, the accuracy of content recommendations is evaluated in comparison with the 

benchmark methods. In the experiments, min_sup and min_pw was set to 0.1 (10%) and 0.5, 

respectively.  

6.3.1 Experiments with neighborhood size 

The following experiment investigates the effect of the enriched model through the neighborhood. 

And the number of recommended items N was set to 10 for each user in the test set. As noted in a 

number of previous studies, the size of the neighborhood influences the recommendation quality of 
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neighborhood-based algorithms. Therefore, different numbers of user neighbors were used for model 

enrichment: 10, 20, 30, 40, 50, and 60.  

Table 3 summarizes the results of RHR and HR for the NSF dataset. With respect to HR, we 

observe that HR tends to improve slightly as the neighborhood size increases from 10 to 20; beyond 

this point, any further increase of the model size did not affect the performance. Interestingly, RHR 

was poorer for a neighborhood size of 30, 40, 50, and 60 than for a size of 20. 

(Table 3 about here) 

(Table 4 about here) 

 

We further examined the performance of the MLens dataset. Similar results to NSF were obtained 

for MLens, as can be seen in Table 4. For example, when the neighborhood size is 30, this provides a 

reasonably good performance for both HR and RHR. 

These results were affected by the fact that a neighborhood with a small size provides enough 

collaborative term patterns for each user. Recall that patterns are selected for enriching collaborative 

term patterns according to the nearest-order of neighbors, and thus redundant patterns generated by 

farthest neighbors are pruned. Another reason might be that we were only looking for a small number 

of recommended content (i.e., N=10). That is, once the number of nearest neighbors is relatively 

large, the rank of recommended content for each user is barely changed by any further increases in the 

number of nearest neighbors. In practice, recommender systems make a trade-off between 

recommendation accuracy and real-time performance efficiency by pre-selecting a number of nearest 

neighbors. In consideration of both accuracy and computation cost, we selected 20 and 30 as the 

neighborhood size for NSF and MLens model enrichment, respectively, in subsequent experiments. 

6.3.2 Effect of model enrichment 

This section investigates the effect of the enriched model M+ of each user in more detail, by 

comparing the results obtained by the initial model M of each user. We performed an experiment with 

N values of 10, 20, and 30 and examined the average number of collaborative term patterns of users. 
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In the case of NSF, we found that 192 patterns had been enriched for each user, whereas the average 

number was 234 for MLens. 

(Fig. 7 about here) 

 

Fig. 7 presents the results of the experiment. The results demonstrate that the enriched model 

provides considerably improved HR values on all occasions, compared to the initial model. For 

example, the enriched model M+ achieves 8.7% and 11.4% average improvement for NSF and MLens, 

respectively, in terms of HR, compared to the initial model M. Similar conclusions are implied by the 

RHR results as well. More importantly, we found that the enriched model outperforms the initial 

model in all cases that the number of recommended content is small. When N is 10, the enriched 

model obtains an RHR value of 0.489 and 0.388 for NSF and MLens, respectively, whereas the initial 

model demonstrates an RHR value of 0.358 and 0.281, respectively. This is particularly important, 

since users tend to click on content with higher ranks. We conclude that the collaborative model has 

significant advantages in terms of improving both the recommendation accuracy and the 

recommendation ranking. 

6.3.3 Comparisons with other methods 

To experimentally evaluate the performance of top-N recommendation, we calculated the hit rate 

(HR) and the reciprocal hit rank (RHR) obtained by NB, VT, UCF, ICF and M+. We selectively varied 

the number of returned items N from 10 to 30 with an increment of 10. According to previous studies 

for collaborative filtering, the neighborhood size of UCF and ICF was set to 50. 

Fig. 8 shows the results of RHR and HR for the NSF and MLens dataset, showing how M+ 

outperforms the benchmark methods. As the number of recommended items N increases, the HR and 

RHR values tend to increase. Comparing the results achieved by M+ and the benchmark algorithms, 

for both test sets, the HR value of the former was found to be superior to that of the benchmark 

methods in all cases. In the NSF dataset, on average, on all occasions, M+ outperforms VT, NB, UCF 

and ICF by 6.7%, 16.7%, 7% and 8.5%, respectively. And for the MLens dataset, M+ obtains 11.1%, 

12.7%, 4.2%, and 4.2% improvement compared to VT, NB, UCF, and ICF, respectively. With respect 
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to RHR, similar results are demonstrated. More interestingly, M+ significantly outperforms the other 

methods when a relatively small number of content items were recommended. For the MLens dataset, 

in the case of N=10, our method outperforms all of the other methods, whereas for the NSF dataset, 

only VT achieves comparable results. That is, M+ provides more suitable content with a higher rank in 

the recommended content set, and thus can provide better quality of content for the target user than 

the other methods. 

(Fig. 8 about here) 

 

Ideally, recommender systems should provide a wide range of desirable content for users. 

Therefore, we continued to analyze the number of content items for which the methods, except for 

NB, could not provide any predictions for a user (i.e., the prediction value of the target user for the 

content was zero). Recall that NB and VT is a class of content-based filtering, whereas UCF and ICF 

is a class of collaborative filtering. Strictly speaking, our approach is closely connected with content-

based filtering due to the dependence of content characteristics (i.e., content-based user models, 

content-based neighbors, content-based enrichments, and content-based recommendations). The 

results of the NSF dataset were that 2.6%, 7.1%, 7.1% and 2.9% of items for VT, UCF, ICF and M+ 

could not be predicted, respectively. For the MLens dataset, 0.12%, 0.29%, 0.68% and 0.13% of items 

for VT, UCF, ICF and M+ could not be predicted, respectively. As noted previously, such results are 

due to the fact that the collaborative filtering approaches, UCF and ICF, can only make predictions 

for items that at least a few users have rated. On the other hand, VT and M+ can only make predictions 

for items that contain terms in the target user model, although they never suffer from cold start items.  

These comparison experiments show that our collaborative model effectively and consistently 

improves the recommendation quality. 

7. Conclusions and future work 

Automated recommender systems are becoming widely used as a solution for reducing information 

overload of diverse domains. In this paper we presented a new and unique method for modeling user 
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interests via a collaborative approach of users. It also provides enhanced recommendation accuracy. 

The major advantage of the proposed modeling method is that it supports not only identification of 

each user’s useful patterns but also enrichment of valuable neighbors’ patterns. As noted in our 

experimental results, our model obtained better recommendation accuracy compared to the 

benchmark methods. Moreover, we also observed that our method can provide more suitable content 

for user preferences, even when the number of recommended items is small. There are common issues 

that have been mentioned in keyword-based analysis: homonymy and synonymy. We expect to 

improve our user model further by considering word semantics such as WordNet [23] or ontologies. 

Therefore, we plan to do further study on semantic user models in recommender systems. 
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[Tables] 

Table 1. After mining user u’s content of interest, five personalized term patterns are found. 

Pattern-id PTP PS Length 

 p1 {t1, t2, t3} 0.56 3 
 p2 {t1, t2, t3, t4} 0.51 4 
 p3 {t1, t2, t5} 0.47 3 
 p4 {t4, t5} 0.41 2 
p5 {t2, t3, t4} 0.32 3 

 

 

Table 2. Datasets used in experimental evaluation. 

 
Number of  

users 
Number of  

items 
Number of interest 

items 

NSF 78 974 9,845 

MLens 658 1,682 50,318 

 

 

Table 3. HR and RHR with respect to increasing neighborhood size (NSF). 

Neighbors: 10 20 30 40 50 60 

HR 0.1584 0.1636 0.1640 0.1651 0.1655 0.1643 

RHR 0.4238 0.4891 0.4889 0.4745 0.4732 0.4732 

 

 

Table 4. HR and RHR with respect to increasing neighborhood size (MLens). 

Neighbors: 10 20 30 40 50 60 

HR 0.2043 0.2136 0.2255 0.2262 0.2262 0.2288 

RHR 0.2822 0.3666 0.3881 0.3881 0.3876 0.3732 
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[Figures] 

 

 

Fig. 1. A tree structure of Mu for personalized term patterns in Table 1. 

 

 

Fig. 2. Initial model for user v who is a neighbor of target user u. 
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Fig. 3. Specific patterns, general pattern, and enriched patterns. 

 

 

 

Fig. 4. Enriched user u model, M+
u, by neighbor user v. 
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Fig. 5. An overview of PRCUM for content recommendations. 

 

 

Fig. 6. A snapshot of the user interface for PRCUM. 
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Fig. 7. Comparison of HR and RHR obtained by the initial model and the enriched model. 



 29 

 

  

  
Fig. 8. Comparisons of HR and RHR with respect to increasing N. 
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